[go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lymphocytes and innate immune cells in acute kidney injury and repair

Abstract

Acute kidney injury (AKI) is a common and serious disease entity that affects native kidneys and allografts but for which no specific treatments exist. Complex intrarenal inflammatory processes driven by lymphocytes and innate immune cells have key roles in the development and progression of AKI. Many studies have focused on prevention of early injury in AKI. However, most patients with AKI present after injury is already established. Increasing research is therefore focusing on mechanisms of renal repair following AKI and prevention of progression from AKI to chronic kidney disease. CD4+ and CD8+ T cells, B cells and neutrophils are probably involved in the development and progression of AKI, whereas regulatory T cells, double-negative T cells and type 2 innate lymphoid cells have protective roles. Several immune cells, such as macrophages and natural killer T cells, can have both deleterious and protective effects, depending on their subtype and/or the stage of AKI. The immune system not only participates in injury and repair processes during AKI but also has a role in mediating AKI-induced distant organ dysfunction. Targeted manipulation of immune cells is a promising therapeutic strategy to improve AKI outcomes.

Key points

  • Robust intrarenal inflammatory processes driven by lymphocytes and innate immune cells are important in the pathogenesis of acute kidney injury (AKI); these processes have primarily been studied in ischaemia–reperfusion injury and cisplatin-induced AKI models.

  • CD4+ T cells, B cells, neutrophils, M1 macrophages and type I natural killer T cells mainly exert pro-inflammatory roles in AKI, contributing to injury, whereas regulatory T cells, double-negative T cells, regulatory B cells and type 2 innate lymphoid cells have anti-inflammatory roles.

  • Understanding the role of lymphocytes in kidney repair after AKI is important to enable the development of novel therapeutic agents to accelerate recovery and prevent the development of kidney fibrosis and progression to chronic kidney disease.

  • During kidney repair, effector-memory T cells are probably involved in persistent inflammation and fibrosis, whereas regulatory T cells promote tubular regeneration; B cells and plasma cells also contribute to tubular atrophy and fibrosis, whereas M2 macrophages are a heterogeneous population with both regenerative and profibrotic effects.

  • Increasing evidence suggests that immune cells and their mediators contribute to distant organ dysfunction in AKI, which substantially influences patient outcomes.

  • Novel technologies such as single-cell RNA sequencing, spatial transcriptomics, kidney-on-a-chip and kidney organoids have the potential to revolutionize research on the roles of immune cells in the kidney.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Roles of lymphocytes and innate immune cells during the early phase of AKI.
Fig. 2: Timeline of AKI recognition and immune responses.
Fig. 3: Roles of lymphocytes and innate immune cells in tubular regeneration, atrophy and fibrosis.
Fig. 4: AKI-induced distant organ crosstalk.

Similar content being viewed by others

References

  1. Al-Jaghbeer, M., Dealmeida, D., Bilderback, A., Ambrosino, R. & Kellum, J. A. Clinical decision support for in-hospital AKI. J. Am. Soc. Nephrol. 29, 654–660 (2018).

    Article  PubMed  Google Scholar 

  2. James, M. T., Bhatt, M., Pannu, N. & Tonelli, M. Long-term outcomes of acute kidney injury and strategies for improved care. Nat. Rev. Nephrol. 16, 193–205 (2020).

    Article  PubMed  Google Scholar 

  3. Ishani, A. et al. Acute kidney injury increases risk of ESRD among elderly. J. Am. Soc. Nephrol. 20, 223–228 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chawla, L. S., Eggers, P. W., Star, R. A. & Kimmel, P. L. Acute kidney injury and chronic kidney disease as interconnected syndromes. N. Engl. J. Med. 371, 58–66 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kellum, J. A. et al. Acute kidney injury. Nat. Rev. Dis. Prim. 7, 52 (2021).

    Article  PubMed  Google Scholar 

  6. Jang, H. R. & Rabb, H. Immune cells in experimental acute kidney injury. Nat. Rev. Nephrol. 11, 88–101 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Cavaillé-Coll, M. et al. Summary of FDA workshop on ischemia reperfusion injury in kidney transplantation. Am. J. Transpl. 13, 1134–1148 (2013).

    Article  Google Scholar 

  8. Kurzhagen, J. T., Dellepiane, S., Cantaluppi, V. & Rabb, H. AKI: an increasingly recognized risk factor for CKD development and progression. J. Nephrol. 33, 1171–1187 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Pefanis, A., Ierino, F. L., Murphy, J. M. & Cowan, P. J. Regulated necrosis in kidney ischemia-reperfusion injury. Kidney Int. 96, 291–301 (2019).

    Article  PubMed  Google Scholar 

  10. Chen, G. Y. & Nunez, G. Sterile inflammation: sensing and reacting to damage. Nat. Rev. Immunol. 10, 826–837 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thomas, M. E. et al. The definition of acute kidney injury and its use in practice. Kidney Int. 87, 62–73 (2015).

    Article  PubMed  Google Scholar 

  12. Kurts, C., Panzer, U., Anders, H. J. & Rees, A. J. The immune system and kidney disease: basic concepts and clinical implications. Nat. Rev. Immunol. 13, 738–753 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Lee, S. A., Cozzi, M., Bush, E. L. & Rabb, H. Distant organ dysfunction in acute kidney injury: a review. Am. J. Kidney Dis. 72, 846–856 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373–384 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Anders, H. J. & Schaefer, L. Beyond tissue injury-damage-associated molecular patterns, toll-like receptors, and inflammasomes also drive regeneration and fibrosis. J. Am. Soc. Nephrol. 25, 1387–1400 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Anders, H. J., Banas, B. & Schlondorff, D. Signaling danger: toll-like receptors and their potential roles in kidney disease. J. Am. Soc. Nephrol. 15, 854–867 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Wolfs, T. G. et al. In vivo expression of Toll-like receptor 2 and 4 by renal epithelial cells: IFN-gamma and TNF-alpha mediated up-regulation during inflammation. J. Immunol. 168, 1286–1293 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Leemans, J. C. et al. Renal-associated TLR2 mediates ischemia/reperfusion injury in the kidney. J. Clin. Invest. 115, 2894–2903 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, S. et al. Peroxiredoxin 1 aggravates acute kidney injury by promoting inflammation through Mincle/Syk/NF-kappaB signaling. Kidney Int. 104, 305–323 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Wu, H. et al. TLR4 activation mediates kidney ischemia/reperfusion injury. J. Clin. Invest. 117, 2847–2859 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, L. M. et al. Pharmacological inhibition of MyD88 homodimerization counteracts renal ischemia reperfusion-induced progressive renal injury in vivo and in vitro. Sci. Rep. 6, 26954 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kulkarni, O. P. et al. Toll-like receptor 4-induced IL-22 accelerates kidney regeneration. J. Am. Soc. Nephrol. 25, 978–989 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Andres-Hernando, A. et al. Cytokine production increases and cytokine clearance decreases in mice with bilateral nephrectomy. Nephrol. Dial. Transpl. 27, 4339–4347 (2012).

    Article  CAS  Google Scholar 

  24. Djudjaj, S. et al. Macrophage migration inhibitory factor limits renal inflammation and fibrosis by counteracting tubular cell cycle arrest. J. Am. Soc. Nephrol. 28, 3590–3604 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li, J. et al. Blocking macrophage migration inhibitory factor protects against cisplatin-induced acute kidney injury in mice. Mol. Ther. 26, 2523–2532 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Amersfoort, J., Eelen, G. & Carmeliet, P. Immunomodulation by endothelial cells-partnering up with the immune system? Nat. Rev. Immunol. 22, 576–588 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kirita, Y., Wu, H., Uchimura, K., Wilson, P. C. & Humphreys, B. D. Cell profiling of mouse acute kidney injury reveals conserved cellular responses to injury. Proc. Natl Acad. Sci. USA 117, 15874–15883 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Perry, H. M. et al. Endothelial sphingosine 1phosphate receptor1 mediates protection and recovery from acute kidney injury. J. Am. Soc. Nephrol. 27, 3383–3393 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Privratsky, J. R. et al. A macrophage-endothelial immunoregulatory axis ameliorates septic acute kidney injury. Kidney Int. 103, 514–528 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. Dumas, S. J. et al. Single-cell RNA sequencing reveals renal endothelium heterogeneity and metabolic adaptation to water deprivation. J. Am. Soc. Nephrol. 31, 118–138 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Kalucka, J. et al. Single-cell transcriptome atlas of murine endothelial cells. Cell 180, 764–779.e720 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Babickova, J. et al. Regardless of etiology, progressive renal disease causes ultrastructural and functional alterations of peritubular capillaries. Kidney Int. 91, 70–85 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Menshikh, A. et al. Capillary rarefaction is more closely associated with CKD progression after cisplatin, rhabdomyolysis, and ischemia-reperfusion-induced AKI than renal fibrosis. Am. J. Physiol. Renal Physiol. 317, F1383–F1397 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kung, C. W. & Chou, Y. H. Acute kidney disease: an overview of the epidemiology, pathophysiology, and management. Kidney Res. Clin. Pract. 42, 686–699 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang, C., Li, S. W., Zhong, X., Liu, B. C. & Lv, L. L. An update on renal fibrosis: from mechanisms to therapeutic strategies with a focus on extracellular vesicles. Kidney Res. Clin. Pract. 42, 174–187 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rabb, H. et al. Inflammation in AKI: current understanding, key questions, and knowledge gaps. J. Am. Soc. Nephrol. 27, 371–379 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Ascon, D. B. et al. Phenotypic and functional characterization of kidney-infiltrating lymphocytes in renal ischemia reperfusion injury. J. Immunol. 177, 3380–3387 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Lai, L. W., Yong, K. C., Igarashi, S. & Lien, Y. H. A sphingosine-1-phosphate type 1 receptor agonist inhibits the early T-cell transient following renal ischemia-reperfusion injury. Kidney Int. 71, 1223–1231 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Gharaie Fathabad, S. et al. T lymphocytes in acute kidney injury and repair. Semin. Nephrol. 40, 114–125 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Rabb, H. et al. Pathophysiological role of T lymphocytes in renal ischemia-reperfusion injury in mice. Am. J. Physiol. Renal Physiol. 279, F525–F531 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Burne-Taney, M. J. et al. Acute renal failure after whole body ischemia is characterized by inflammation and T cell-mediated injury. Am. J. Physiol. Renal Physiol. 285, F87–F94 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Savransky, V. et al. Role of the T-cell receptor in kidney ischemia-reperfusion injury. Kidney Int. 69, 233–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Satpute, S. R. et al. The role for T cell repertoire/antigen-specific interactions in experimental kidney ischemia reperfusion injury. J. Immunol. 183, 984–992 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Burne, M. J. et al. Identification of the CD4+ T cell as a major pathogenic factor in ischemic acute renal failure. J. Clin. Invest. 108, 1283–1290 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu, M. et al. A pathophysiologic role for T lymphocytes in murine acute cisplatin nephrotoxicity. J. Am. Soc. Nephrol. 17, 765–774 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Abbas, A. K., Murphy, K. M. & Sher, A. Functional diversity of helper T lymphocytes. Nature 383, 787–793 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Bajwa, A. et al. Dendritic cell sphingosine 1-phosphate receptor-3 regulates Th1-Th2 polarity in kidney ischemia-reperfusion injury. J. Immunol. 189, 2584–2596 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yokota, N., Burne-Taney, M., Racusen, L. & Rabb, H. Contrasting roles for STAT4 and STAT6 signal transduction pathways in murine renal ischemia-reperfusion injury. Am. J. Physiol. Renal Physiol. 285, F319–F325 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Acosta-Rodriguez, E. V. et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat. Immunol. 8, 639–646 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Chung, Y. et al. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity 30, 576–587 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dong, X., Bachman, L. A., Miller, M. N., Nath, K. A. & Griffin, M. D. Dendritic cells facilitate accumulation of IL-17 T cells in the kidney following acute renal obstruction. Kidney Int. 74, 1294–1309 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pindjakova, J. et al. Interleukin-1 accounts for intrarenal Th17 cell activation during ureteral obstruction. Kidney Int. 81, 379–390 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Mehrotra, P., Patel, J. B., Ivancic, C. M., Collett, J. A. & Basile, D. P. Th-17 cell activation in response to high salt following acute kidney injury is associated with progressive fibrosis and attenuated by AT-1R antagonism. Kidney Int. 88, 776–784 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mehrotra, P., Sturek, M., Neyra, J. A. & Basile, D. P. Calcium channel Orai1 promotes lymphocyte IL-17 expression and progressive kidney injury. J. Clin. Invest. 129, 4951–4961 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chan, A. J. et al. Innate IL-17A-producing leukocytes promote acute kidney injury via inflammasome and Toll-like receptor activation. Am. J. Pathol. 184, 1411–1418 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Ascon, D. B. et al. Normal mouse kidneys contain activated and CD3+CD4- CD8- double-negative T lymphocytes with a distinct TCR repertoire. J. Leukoc. Biol. 84, 1400–1409 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jang, H. R. et al. Early exposure to germs modifies kidney damage and inflammation after experimental ischemia-reperfusion injury. Am. J. Physiol. Renal Physiol. 297, F1457–F1465 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Stenvinkel, P., Meyer, C. J., Block, G. A., Chertow, G. M. & Shiels, P. G. Understanding the role of the cytoprotective transcription factor nuclear factor erythroid 2-related factor 2-lessons from evolution, the animal kingdom and rare progeroid syndromes. Nephrol. Dial. Transpl. 35, 2036–2045 (2020).

    Article  CAS  Google Scholar 

  59. Liu, M. et al. Transcription factor Nrf2 is protective during ischemic and nephrotoxic acute kidney injury in mice. Kidney Int. 76, 277–285 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Noel, S. et al. T lymphocyte-specific activation of Nrf2 protects from AKI. J. Am. Soc. Nephrol. 26, 2989–3000 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Noel, S., Arend, L. J., Bandapalle, S., Reddy, S. P. & Rabb, H. Kidney epithelium specific deletion of kelch-like ECH-associated protein 1 (Keap1) causes hydronephrosis in mice. BMC Nephrol. 17, 110 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Suzuki, T. et al. Hyperactivation of Nrf2 in early tubular development induces nephrogenic diabetes insipidus. Nat. Commun. 8, 14577 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Noel, S., Lee, S. A., Sadasivam, M., Hamad, A. R. A. & Rabb, H. KEAP1 editing using CRISPR/Cas9 for therapeutic NRF2 activation in primary human T lymphocytes. J. Immunol. 200, 1929–1936 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Kurzhagen, J. T. et al. T Cell Nrf2/Keap1 gene editing using CRISPR/Cas9 and experimental kidney ischemia-reperfusion injury. Antioxid. Redox Signal. 38, 959–973 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Gandolfo, M. T. et al. Foxp3+ regulatory T cells participate in repair of ischemic acute kidney injury. Kidney Int. 76, 717–729 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. D’Alessio, F. R., Kurzhagen, J. T. & Rabb, H. Reparative T lymphocytes in organ injury. J. Clin. Invest. 129, 2608–2618 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kinsey, G. R. et al. Autocrine adenosine signaling promotes regulatory T cell-mediated renal protection. J. Am. Soc. Nephrol. 23, 1528–1537 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kinsey, G. R. et al. Regulatory T cells suppress innate immunity in kidney ischemia-reperfusion injury. J. Am. Soc. Nephrol. 20, 1744–1753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lee, H. et al. CD4+CD25+ regulatory T cells attenuate cisplatin-induced nephrotoxicity in mice. Kidney Int. 78, 1100–1109 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Martina, M. N. et al. Double-negative alphabeta T cells are early responders to AKI and are found in human kidney. J. Am. Soc. Nephrol. 27, 1113–1123 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Grishkan, I. V., Ntranos, A., Calabresi, P. A. & Gocke, A. R. Helper T cells down-regulate CD4 expression upon chronic stimulation giving rise to double-negative T cells. Cell Immunol. 284, 68–74 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Erard, F., Wild, M. T., Garcia-Sanz, J. A. & Le Gros, G. Switch of CD8 T cells to noncytolytic CD8-CD4- cells that make TH2 cytokines and help B cells. Science 260, 1802–1805 (1993).

    Article  CAS  PubMed  Google Scholar 

  74. Sadasivam, M. et al. Activation and proliferation of PD-1(+) kidney double-negative T cells is dependent on nonclassical MHC proteins and IL-2. J. Am. Soc. Nephrol. 30, 277–292 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gong, J. et al. TCR+CD4CD8 (double negative) T cells protect from cisplatin-induced renal epithelial cell apoptosis and acute kidney injury. Am. J. Physiol. Renal Physiol. 318, F1500–F1512 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vantourout, P. & Hayday, A. Six-of-the-best: unique contributions of γδ T cells to immunology. Nat. Rev. Immunol. 13, 88–100 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hochegger, K. et al. Role of alpha/beta and gamma/delta T cells in renal ischemia-reperfusion injury. Am. J. Physiol. Renal Physiol. 293, F741–F747 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Gocze, I. et al. Postoperative cellular stress in the kidney is associated with an early systemic gammadelta T-cell immune cell response. Crit. Care 22, 168 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Rossjohn, J., Pellicci, D. G., Patel, O., Gapin, L. & Godfrey, D. I. Recognition of CD1d-restricted antigens by natural killer T cells. Nat. Rev. Immunol. 12, 845–857 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Li, L. et al. NKT cell activation mediates neutrophil IFN-gamma production and renal ischemia-reperfusion injury. J. Immunol. 178, 5899–5911 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Ferhat, M. et al. Endogenous IL-33 contributes to kidney ischemia-reperfusion Injury as an alarmin. J. Am. Soc. Nephrol. 29, 1272–1288 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Uchida, T. et al. Activated natural killer T cells in mice induce acute kidney injury with hematuria through possibly common mechanisms shared by human CD56+ T cells. Am. J. Physiol. Renal Physiol. 315, F618–F627 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yang, S. H. et al. Sulfatide-reactive natural killer T cells abrogate ischemia-reperfusion injury. J. Am. Soc. Nephrol. 22, 1305–1314 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shen, P. & Fillatreau, S. Antibody-independent functions of B cells: a focus on cytokines. Nat. Rev. Immunol. 15, 441–451 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Jang, H. R. et al. B cells limit repair after ischemic acute kidney injury. J. Am. Soc. Nephrol. 21, 654–665 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Burne-Taney, M. J. et al. B cell deficiency confers protection from renal ischemia reperfusion injury. J. Immunol. 171, 3210–3215 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Inaba, A. et al. B lymphocyte-derived CCL7 augments neutrophil and monocyte recruitment, exacerbating acute kidney injury. J. Immunol. 205, 1376–1384 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Han, H. et al. Renal recruitment of B lymphocytes exacerbates tubulointerstitial fibrosis by promoting monocyte mobilization and infiltration after unilateral ureteral obstruction. J. Pathol. 241, 80–90 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Burne-Taney, M. J., Yokota-Ikeda, N. & Rabb, H. Effects of combined T- and B-cell deficiency on murine ischemia reperfusion injury. Am. J. Transpl. 5, 1186–1193 (2005).

    Article  Google Scholar 

  90. Peng, B., Ming, Y. & Yang, C. Regulatory B cells: the cutting edge of immune tolerance in kidney transplantation. Cell Death Dis. 9, 109 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Ding, Q. et al. Regulatory B cells are identified by expression of TIM-1 and can be induced through TIM-1 ligation to promote tolerance in mice. J. Clin. Invest. 121, 3645–3656 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fang, T. et al. Anti-CD45RB antibody therapy attenuates renal ischemia-reperfusion injury by inducing regulatory B cells. J. Am. Soc. Nephrol. 30, 1870–1885 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Vivier, E., Tomasello, E., Baratin, M., Walzer, T. & Ugolini, S. Functions of natural killer cells. Nat. Immunol. 9, 503–510 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Zhang, Z. X. et al. NK cells induce apoptosis in tubular epithelial cells and contribute to renal ischemia-reperfusion injury. J. Immunol. 181, 7489–7498 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Victorino, F. et al. Tissue-resident NK cells mediate ischemic kidney injury and are not depleted by anti-asialo-GM1 antibody. J. Immunol. 195, 4973–4985 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Eberl, G., Colonna, M., Di Santo, J. P. & McKenzie, A. N. Innate lymphoid cells. Innate lymphoid cells: a new paradigm in immunology. Science 348, aaa6566 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Riedel, J. H. et al. IL-33-mediated expansion of type 2 innate lymphoid cells protects from progressive glomerulosclerosis. J. Am. Soc. Nephrol. 28, 2068–2080 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Huang, Q. et al. IL-25 elicits innate lymphoid cells and multipotent progenitor type 2 cells that reduce renal ischemic/reperfusion Injury. J. Am. Soc. Nephrol. 26, 2199–2211 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cao, Q. et al. Potentiating tissue-resident type 2 innate lymphoid cells by IL-33 to prevent renal ischemia-reperfusion injury. J. Am. Soc. Nephrol. 29, 961–976 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang, S. et al. Regulatory innate lymphoid cells control innate intestinal inflammation. Cell 171, 201–216.e218 (2017).

    Article  CAS  PubMed  Google Scholar 

  101. Cao, Q. et al. Regulatory innate lymphoid cells suppress innate immunity and reduce renal ischemia/reperfusion injury. Kidney Int. 97, 130–142 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. Pearce, E. L., Poffenberger, M. C., Chang, C. H. & Jones, R. G. Fueling immunity: insights into metabolism and lymphocyte function. Science 342, 1242454 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Buck, M. D., Sowell, R. T., Kaech, S. M. & Pearce, E. L. Metabolic instruction of immunity. Cell 169, 570–586 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Patel, C. H., Leone, R. D., Horton, M. R. & Powell, J. D. Targeting metabolism to regulate immune responses in autoimmunity and cancer. Nat. Rev. Drug. Discov. 18, 669–688 (2019).

    Article  CAS  PubMed  Google Scholar 

  105. Basso, P. J., Andrade-Oliveira, V. & Camara, N. O. S. Targeting immune cell metabolism in kidney diseases. Nat. Rev. Nephrol. 17, 465–480 (2021).

    Article  CAS  PubMed  Google Scholar 

  106. Kang, H. M. et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat. Med. 21, 37–46 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Lee, K. et al. T cell metabolic reprogramming in acute kidney injury and protection by glutamine blockade. JCI Insight 8, e160345 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Burne-Taney, M. J., Yokota, N. & Rabb, H. Persistent renal and extrarenal immune changes after severe ischemic injury. Kidney Int. 67, 1002–1009 (2005).

    Article  PubMed  Google Scholar 

  109. Burne-Taney, M. J. et al. Transfer of lymphocytes from mice with renal ischemia can induce albuminuria in naive mice: a possible mechanism linking early injury and progressive renal disease? Am. J. Physiol. Renal Physiol. 291, F981–F986 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Ascon, M. et al. Renal ischemia-reperfusion leads to long term infiltration of activated and effector-memory T lymphocytes. Kidney Int. 75, 526–535 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Ko, G. J. et al. Transcriptional analysis of infiltrating T cells in kidney ischemia-reperfusion injury reveals a pathophysiological role for CCR5. Am. J. Physiol. Renal Physiol. 302, F762–F773 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. do Valle Duraes, F. et al. Immune cell landscaping reveals a protective role for regulatory T cells during kidney injury and fibrosis. JCI Insight 5, e130651 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Thorenz, A. et al. IL-17A blockade or deficiency does not affect progressive renal fibrosis following renal ischaemia reperfusion injury in mice. J. Pharm. Pharmacol. 69, 1125–1135 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Mehrotra, P. et al. IL-17 mediates neutrophil infiltration and renal fibrosis following recovery from ischemia reperfusion: compensatory role of natural killer cells in athymic rats. Am. J. Physiol. Renal Physiol. 312, F385–F397 (2017).

    Article  CAS  PubMed  Google Scholar 

  115. Dixon, E. E., Wu, H., Muto, Y., Wilson, P. C. & Humphreys, B. D. Spatially resolved transcriptomic analysis of acute kidney injury in a female murine model. J. Am. Soc. Nephrol. 33, 279–289 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gharaie, S. et al. Microbiome modulation after severe acute kidney injury accelerates functional recovery and decreases kidney fibrosis. Kidney Int. 104, 470–491 (2023).

    Article  CAS  PubMed  Google Scholar 

  117. Kim, M. G. et al. IL-2/anti-IL-2 complex attenuates renal ischemia-reperfusion injury through expansion of regulatory T cells. J. Am. Soc. Nephrol. 24, 1529–1536 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chen, G. et al. mTOR signaling regulates protective activity of transferred CD4+Foxp3+ T cells in repair of acute kidney injury. J. Immunol. 197, 3917–3926 (2016).

    Article  CAS  PubMed  Google Scholar 

  119. Gandolfo, M. T. et al. Mycophenolate mofetil modifies kidney tubular injury and Foxp3+ regulatory T cell trafficking during recovery from experimental ischemia-reperfusion. Transpl. Immunol. 23, 45–52 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Xia, N. et al. A unique population of regulatory T cells in heart potentiates cardiac protection from myocardial Infarction. Circulation 142, 1956–1973 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Ito, M. et al. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature 565, 246–250 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Juvet, S. C. & Zhang, L. Double negative regulatory T cells in transplantation and autoimmunity: recent progress and future directions. J. Mol. Cell Biol. 4, 48–58 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Li, H. & Tsokos, G. C. Double-negative T cells in autoimmune diseases. Curr. Opin. Rheumatol. 33, 163–172 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Cippa, P. E. et al. A late B lymphocyte action in dysfunctional tissue repair following kidney injury and transplantation. Nat. Commun. 10, 1157 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Solez, K., Morel-Maroger, L. & Sraer, J. D. The morphology of “acute tubular necrosis” in man: analysis of 57 renal biopsies and a comparison with the glycerol model. Medicine 58, 362–376 (1979).

    Article  CAS  PubMed  Google Scholar 

  126. Chiao, H. et al. Alpha-melanocyte-stimulating hormone protects against renal injury after ischemia in mice and rats. J. Clin. Invest. 99, 1165–1172 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Awad, A. S. et al. Compartmentalization of neutrophils in the kidney and lung following acute ischemic kidney injury. Kidney Int. 75, 689–698 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Melo et al. Integration of spatial and single-cell transcriptomics localizes epithelial cell-immune cross-talk in kidney injury. JCI Insight 6, e147703 (2021).

    Article  Google Scholar 

  129. Winterbourn, C. C., Kettle, A. J. & Hampton, M. B. Reactive oxygen species and neutrophil function. Annu. Rev. Biochem. 85, 765–792 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Li, L. et al. IL-17 produced by neutrophils regulates IFN-gamma-mediated neutrophil migration in mouse kidney ischemia-reperfusion injury. J. Clin. Invest. 120, 331–342 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Block, H. et al. Crucial role of SLP-76 and ADAP for neutrophil recruitment in mouse kidney ischemia-reperfusion injury. J. Exp. Med. 209, 407–421 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kelly, K. J. et al. Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury. J. Clin. Invest. 97, 1056–1063 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Rabb, H. et al. Role of Cd11a and Cd11b in ischemic acute-renal-failure in rats. Am. J. Physiol. 267, F1052–F1058 (1994).

    CAS  PubMed  Google Scholar 

  134. Rouschop, K. M. et al. Protection against renal ischemia reperfusion injury by CD44 disruption. J. Am. Soc. Nephrol. 16, 2034–2043 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Tanaka, S. et al. Vascular adhesion protein-1 enhances neutrophil infiltration by generation of hydrogen peroxide in renal ischemia/reperfusion injury. Kidney Int. 92, 154–164 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 18, 134–147 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Devant, P. & Kagan, J. C. Molecular mechanisms of gasdermin D pore-forming activity. Nat. Immunol. 24, 1064–1075 (2023).

    Article  CAS  PubMed  Google Scholar 

  138. Sanz, A. B., Sanchez-Nino, M. D., Ramos, A. M. & Ortiz, A. Regulated cell death pathways in kidney disease. Nat. Rev. Nephrol. 19, 281–299 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Nakazawa, D. et al. Histones and neutrophil extracellular traps enhance tubular necrosis and remote organ injury in ischemic AKI. J. Am. Soc. Nephrol. 28, 1753–1768 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Raup-Konsavage, W. M. et al. Neutrophil peptidyl arginine deiminase-4 has a pivotal role in ischemia/reperfusion-induced acute kidney injury. Kidney Int. 93, 365–374 (2018).

    Article  CAS  PubMed  Google Scholar 

  141. Rabadi, M., Kim, M., D’Agati, V. & Lee, H. T. Peptidyl arginine deiminase-4-deficient mice are protected against kidney and liver injury after renal ischemia and reperfusion. Am. J. Physiol. Renal Physiol. 311, F437–F449 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Biron, B. M. et al. PAD4 deficiency leads to decreased organ dysfunction and improved survival in a dual insult model of hemorrhagic shock and sepsis. J. Immunol. 200, 1817–1828 (2018).

    Article  CAS  PubMed  Google Scholar 

  143. Jansen, M. P. et al. Release of extracellular DNA influences renal ischemia reperfusion injury by platelet activation and formation of neutrophil extracellular traps. Kidney Int. 91, 352–364 (2017).

    Article  CAS  PubMed  Google Scholar 

  144. Deng, B. et al. The leukotriene B4-leukotriene B4 receptor axis promotes cisplatin-induced acute kidney injury by modulating neutrophil recruitment. Kidney Int. 92, 89–100 (2017).

    Article  CAS  PubMed  Google Scholar 

  145. Melnikov, V. Y. et al. Neutrophil-independent mechanisms of caspase-1- and IL-18-mediated ischemic acute tubular necrosis in mice. J. Clin. Invest. 110, 1083–1091 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Tsuji, N. et al. BAM15 treats mouse sepsis and kidney injury, linking mortality, mitochondrial DNA, tubule damage, and neutrophils. J. Clin. Invest. 133, e152401 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wang, J. et al. Visualizing the function and fate of neutrophils in sterile injury and repair. Science 358, 111–116 (2017).

    Article  CAS  PubMed  Google Scholar 

  148. Woodfin, A. et al. The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo. Nat. Immunol. 12, 761–769 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Garner, H. & de Visser, K. E. Neutrophils take a round-trip. Science 358, 42–43 (2017).

    Article  CAS  PubMed  Google Scholar 

  150. Ysebaert, D. K. et al. Identification and kinetics of leukocytes after severe ischaemia/reperfusion renal injury. Nephrol. Dial. Transpl. 15, 1562–1574 (2000).

    Article  CAS  Google Scholar 

  151. Lu, L. H. et al. Increased macrophage infiltration and fractalkine expression in cisplatin-induced acute renal failure in mice. J. Pharmacol. Exp. Ther. 324, 111–117 (2008).

    Article  CAS  PubMed  Google Scholar 

  152. Li, L. et al. The chemokine receptors CCR2 and CX3CR1 mediate monocyte/macrophage trafficking in kidney ischemia-reperfusion injury. Kidney Int. 74, 1526–1537 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Clements, M. et al. Differential Ly6C expression after renal ischemia-reperfusion identifies unique macrophage populations. J. Am. Soc. Nephrol. 27, 159–170 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Anders, H. J. & Ryu, M. Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney Int. 80, 915–925 (2011).

    Article  CAS  PubMed  Google Scholar 

  155. Tang, P. M., Nikolic-Paterson, D. J. & Lan, H. Y. Macrophages: versatile players in renal inflammation and fibrosis. Nat. Rev. Nephrol. 15, 144–158 (2019).

    Article  PubMed  Google Scholar 

  156. Alikhan, M. A. et al. Colony-stimulating factor-1 promotes kidney growth and repair via alteration of macrophage responses. Am. J. Pathol. 179, 1243–1256 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lee, S. et al. Distinct macrophage phenotypes contribute to kidney injury and repair. J. Am. Soc. Nephrol. 22, 317–326 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Yao, W. et al. Single cell RNA sequencing identifies a unique inflammatory macrophage subset as a druggable target for alleviating acute kidney injury. Adv. Sci. 9, e2103675 (2022).

    Article  Google Scholar 

  159. Zhang, M. Z. et al. CSF-1 signaling mediates recovery from acute kidney injury. J. Clin. Invest. 122, 4519–4532 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ferenbach, D. A. et al. Macrophage/monocyte depletion by clodronate, but not diphtheria toxin, improves renal ischemia/reperfusion injury in mice. Kidney Int. 82, 928–933 (2012).

    Article  CAS  PubMed  Google Scholar 

  161. Jo, S. K., Sung, S. A., Cho, W. Y., Go, K. J. & Kim, H. K. Macrophages contribute to the initiation of ischaemic acute renal failure in rats. Nephrol. Dial. Transpl. 21, 1231–1239 (2006).

    Article  CAS  Google Scholar 

  162. Lee, S. A. et al. Characterization of kidney CD45intCD11bintF4/80+MHCII+CX3CR1+Ly6C- intermediate mononuclear phagocytic cells. PLoS ONE 13, e0198608 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Shin, N. S. et al. Arginase-1 is required for macrophage-mediated renal tubule regeneration. J. Am. Soc. Nephrol. 33, 1077–1086 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Tseng, W. C., Tsai, M. T., Chen, N. J. & Tarng, D. C. Trichostatin A alleviates renal interstitial fibrosis through modulation of the M2 macrophage subpopulation. Int. J. Mol. Sci. 21, 5966 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Zhang, M. Z. et al. IL-4/IL-13-mediated polarization of renal macrophages/dendritic cells to an M2a phenotype is essential for recovery from acute kidney injury. Kidney Int. 91, 375–386 (2017).

    Article  CAS  PubMed  Google Scholar 

  166. Sasaki, K. et al. Deletion of myeloid interferon regulatory factor 4 (Irf4) in mouse model protects against kidney fibrosis after ischemic injury by decreased macrophage recruitment and activation. J. Am. Soc. Nephrol. 32, 1037–1052 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Menke, J. et al. CSF-1 signals directly to renal tubular epithelial cells to mediate repair in mice. J. Clin. Invest. 119, 2330–2342 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Lin, S. L., Castano, A. P., Nowlin, B. T., Lupher, M. L. Jr. & Duffield, J. S. Bone marrow Ly6Chigh monocytes are selectively recruited to injured kidney and differentiate into functionally distinct populations. J. Immunol. 183, 6733–6743 (2009).

    Article  CAS  PubMed  Google Scholar 

  169. Lech, M. et al. Macrophage phenotype controls long-term AKI outcomes–kidney regeneration versus atrophy. J. Am. Soc. Nephrol. 25, 292–304 (2014).

    Article  CAS  PubMed  Google Scholar 

  170. Kuppe, C. et al. Decoding myofibroblast origins in human kidney fibrosis. Nature 589, 281–286 (2021).

    Article  CAS  PubMed  Google Scholar 

  171. Conway, B. R. et al. Kidney single-cell atlas reveals myeloid heterogeneity in progression and regression of kidney disease. J. Am. Soc. Nephrol. 31, 2833–2854 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kruger, T. et al. Identification and functional characterization of dendritic cells in the healthy murine kidney and in experimental glomerulonephritis. J. Am. Soc. Nephrol. 15, 613–621 (2004).

    Article  PubMed  Google Scholar 

  173. Kurts, C., Ginhoux, F. & Panzer, U. Kidney dendritic cells: fundamental biology and functional roles in health and disease. Nat. Rev. Nephrol. 16, 391–407 (2020).

    Article  PubMed  Google Scholar 

  174. Kim, B. S. et al. Ischemia-reperfusion injury activates innate immunity in rat kidneys. Transplantation 79, 1370–1377 (2005).

    Article  PubMed  Google Scholar 

  175. Trombetta, E. S., Ebersold, M., Garrett, W., Pypaert, M. & Mellman, I. Activation of lysosomal function during dendritic cell maturation. Science 299, 1400–1403 (2003).

    Article  CAS  PubMed  Google Scholar 

  176. Dong, X. et al. Resident dendritic cells are the predominant TNF-secreting cell in early renal ischemia-reperfusion injury. Kidney Int. 71, 619–628 (2007).

    Article  CAS  PubMed  Google Scholar 

  177. Tadagavadi, R. K. & Reeves, W. B. Endogenous IL-10 attenuates cisplatin nephrotoxicity: role of dendritic cells. J. Immunol. 185, 4904–4911 (2010).

    Article  CAS  PubMed  Google Scholar 

  178. Tadagavadi, R. K. & Reeves, W. B. Renal dendritic cells ameliorate nephrotoxic acute kidney injury. J. Am. Soc. Nephrol. 21, 53–63 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Tittel, A. P. et al. Functionally relevant neutrophilia in CD11c diphtheria toxin receptor transgenic mice. Nat. Methods 9, 385–390 (2012).

    Article  CAS  PubMed  Google Scholar 

  180. Sawitzki, B. et al. Regulatory cell therapy in kidney transplantation (The ONE Study): a harmonised design and analysis of seven non-randomised, single-arm, phase 1/2A trials. Lancet 395, 1627–1639 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Li, J. S. Y. et al. Tolerogenic dendritic cells protect against acute kidney injury. Kidney Int. 104, 492–507 (2023).

    Article  CAS  PubMed  Google Scholar 

  182. Danelli, L. et al. Early phase mast cell activation determines the chronic outcome of renal ischemia-reperfusion injury. J. Immunol. 198, 2374–2382 (2017).

    Article  CAS  PubMed  Google Scholar 

  183. Summers, S. A. et al. Mast cells mediate acute kidney injury through the production of TNF. J. Am. Soc. Nephrol. 22, 2226–2236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Madjene, L. C. et al. Mast cell chymase protects against acute ischemic kidney injury by limiting neutrophil hyperactivation and recruitment. Kidney Int. 97, 516–527 (2020).

    Article  CAS  PubMed  Google Scholar 

  185. Harding, J. L., Li, Y., Burrows, N. R., Bullard, K. M. & Pavkov, M. E. US trends in hospitalizations for dialysis-requiring acute kidney injury in people with versus without diabetes. Am. J. Kidney Dis. 75, 897–907 (2020).

    Article  PubMed  Google Scholar 

  186. Hassoun, H. T. et al. Ischemic acute kidney injury induces a distant organ functional and genomic response distinguishable from bilateral nephrectomy. Am. J. Physiol. Renal Physiol. 293, F30–F40 (2007).

    Article  CAS  PubMed  Google Scholar 

  187. Klein, C. L. et al. Interleukin-6 mediates lung injury following ischemic acute kidney injury or bilateral nephrectomy. Kidney Int. 74, 901–909 (2008).

    Article  CAS  PubMed  Google Scholar 

  188. Ishii, T. et al. Neutrophil elastase contributes to acute lung injury induced by bilateral nephrectomy. Am. J. Pathol. 177, 1665–1673 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Lie, M. L. et al. Lung T lymphocyte trafficking and activation during ischemic acute kidney injury. J. Immunol. 189, 2843–2851 (2012).

    Article  CAS  PubMed  Google Scholar 

  190. Kramer, A. A. et al. Renal ischemia/reperfusion leads to macrophage-mediated increase in pulmonary vascular permeability. Kidney Int. 55, 2362–2367 (1999).

    Article  CAS  PubMed  Google Scholar 

  191. Bernik, T. R. et al. Pharmacological stimulation of the cholinergic antiinflammatory pathway. J. Exp. Med. 195, 781–788 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Altmann, C. et al. Macrophages mediate lung inflammation in a mouse model of ischemic acute kidney injury. Am. J. Physiol. Renal Physiol. 302, F421–F432 (2012).

    Article  CAS  PubMed  Google Scholar 

  193. Teixeira, J. P., Ambruso, S., Griffin, B. R. & Faubel, S. Pulmonary consequences of acute kidney injury. Semin. Nephrol. 39, 3–16 (2019).

    Article  PubMed  Google Scholar 

  194. Ahuja, N. et al. Circulating IL-6 mediates lung injury via CXCL1 production after acute kidney injury in mice. Am. J. Physiol. Renal Physiol. 303, F864–F872 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Andres-Hernando, A. et al. Circulating IL-6 upregulates IL-10 production in splenic CD4(+) T cells and limits acute kidney injury-induced lung inflammation. Kidney Int. 91, 1057–1069 (2017).

    Article  CAS  PubMed  Google Scholar 

  196. Hoke, T. S. et al. Acute renal failure after bilateral nephrectomy is associated with cytokine-mediated pulmonary injury. J. Am. Soc. Nephrol. 18, 155–164 (2007).

    Article  CAS  PubMed  Google Scholar 

  197. White, L. E., Santora, R. J., Cui, Y., Moore, F. A. & Hassoun, H. T. TNFR1-dependent pulmonary apoptosis during ischemic acute kidney injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 303, L449–L459 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Doi, K. et al. The high-mobility group protein B1-Toll-like receptor 4 pathway contributes to the acute lung injury induced by bilateral nephrectomy. Kidney Int. 86, 316–326 (2014).

    Article  CAS  PubMed  Google Scholar 

  199. Hepokoski, M. et al. Altered lung metabolism and mitochondrial DAMPs in lung injury due to acute kidney injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 320, L821–L831 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Kelly, K. J. Distant effects of experimental renal ischemia/reperfusion injury. J. Am. Soc. Nephrol. 14, 1549–1558 (2003).

    Article  CAS  PubMed  Google Scholar 

  201. Legrand, M. & Rossignol, P. Cardiovascular consequences of acute kidney injury. N. Engl. J. Med. 382, 2238–2247 (2020).

    Article  CAS  PubMed  Google Scholar 

  202. Ferreira, J. P. et al. Proteomic bioprofiles and mechanistic pathways of progression to heart failure. Circ. Heart Fail. 12, e005897 (2019).

    Article  CAS  PubMed  Google Scholar 

  203. Sharp, T. E. 3rd et al. Renal denervation prevents heart failure progression via inhibition of the renin-angiotensin system. J. Am. Coll. Cardiol. 72, 2609–2621 (2018).

    Article  PubMed  Google Scholar 

  204. Polhemus, D. J. et al. Renal sympathetic denervation protects the failing heart via inhibition of neprilysin activity in the kidney. J. Am. Coll. Cardiol. 70, 2139–2153 (2017).

    Article  PubMed  Google Scholar 

  205. Padro, C. J. & Sanders, V. M. Neuroendocrine regulation of inflammation. Semin. Immunol. 26, 357–368 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Crowley, S. D. & Rudemiller, N. P. Immunologic effects of the renin-angiotensin system. J. Am. Soc. Nephrol. 28, 1350–1361 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Rucker, A. J., Rudemiller, N. P. & Crowley, S. D. Salt, hypertension, and immunity. Annu. Rev. Physiol. 80, 283–307 (2018).

    Article  CAS  PubMed  Google Scholar 

  208. Liu, M. et al. Acute kidney injury leads to inflammation and functional changes in the brain. J. Am. Soc. Nephrol. 19, 1360–1370 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Rahati, M., Nozari, M., Eslami, H., Shabani, M. & Basiri, M. Effects of enriched environment on alterations in the prefrontal cortex GFAP- and S100B-immunopositive astrocytes and behavioral deficits in MK-801-treated rats. Neuroscience 326, 105–116 (2016).

    Article  CAS  PubMed  Google Scholar 

  210. Salama, M. et al. Up-regulation of TLR-4 in the brain after ischemic kidney-induced encephalopathy in the rat. CNS Neurol. Disord. Drug Targets 12, 583–586 (2013).

    Article  CAS  PubMed  Google Scholar 

  211. Cao, W. et al. Reno-cerebral reflex activates the renin-angiotensin system, promoting oxidative stress and renal damage after ischemia-reperfusion injury. Antioxid. Redox Signal. 27, 415–432 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Zheng, F. et al. Interleukin-1beta in hypothalamic paraventricular nucleus mediates excitatory renal reflex. Pflug. Arch. 472, 1577–1586 (2020).

    Article  CAS  Google Scholar 

  213. Zhao, L. et al. Acute kidney injury sensitizes the brain vasculature to ang II (angiotensin II) constriction via FGFBP1 (fibroblast growth factor binding protein 1). Hypertension 76, 1924–1934 (2020).

    Article  CAS  PubMed  Google Scholar 

  214. Lane, K., Dixon, J. J., MacPhee, I. A. & Philips, B. J. Renohepatic crosstalk: does acute kidney injury cause liver dysfunction? Nephrol. Dial. Transpl. 28, 1634–1647 (2013).

    Article  Google Scholar 

  215. Golab, F. et al. Ischemic and non-ischemic acute kidney injury cause hepatic damage. Kidney Int. 75, 783–792 (2009).

    Article  CAS  PubMed  Google Scholar 

  216. Stenvinkel, P. et al. IL-10, IL-6, and TNF-alpha: central factors in the altered cytokine network of uremia–the good, the bad, and the ugly. Kidney Int. 67, 1216–1233 (2005).

    Article  CAS  PubMed  Google Scholar 

  217. Gurley, B. J. et al. Extrahepatic ischemia-reperfusion injury reduces hepatic oxidative drug metabolism as determined by serial antipyrine clearance. Pharm. Res. 14, 67–72 (1997).

    Article  CAS  PubMed  Google Scholar 

  218. Park, S. W. et al. Cytokines induce small intestine and liver injury after renal ischemia or nephrectomy. Lab. Invest. 91, 63–84 (2011).

    Article  CAS  PubMed  Google Scholar 

  219. Park, S. W. et al. Paneth cell-mediated multiorgan dysfunction after acute kidney injury. J. Immunol. 189, 5421–5433 (2012).

    Article  CAS  PubMed  Google Scholar 

  220. Gong, J., Noel, S., Pluznick, J. L., Hamad, A. R. A. & Rabb, H. Gut microbiota-kidney cross-talk in acute kidney injury. Semin. Nephrol. 39, 107–116 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Ramezani, A. et al. Role of the gut microbiome in uremia: a potential therapeutic target. Am. J. Kidney Dis. 67, 483–498 (2016).

    Article  CAS  PubMed  Google Scholar 

  222. Noel, S. et al. Gut microbiota-immune system interactions during acute kidney injury. Kidney360 2, 528–531 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Osada, Y. et al. Antibiotic-induced microbiome depletion alters renal glucose metabolism and exacerbates renal injury after ischemia-reperfusion injury in mice. Am. J. Physiol. Renal Physiol. 321, F455–F465 (2021).

    Article  CAS  PubMed  Google Scholar 

  224. Andrade-Oliveira, V. et al. Gut bacteria products prevent AKI induced by ischemia-reperfusion. J. Am. Soc. Nephrol. 26, 1877–1888 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Nakade, Y. et al. Gut microbiota-derived D-serine protects against acute kidney injury. JCI Insight 3, e97957 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Bachem, A. et al. Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8+ T cells. Immunity 51, 285–297.e285 (2019).

    Article  CAS  PubMed  Google Scholar 

  227. Yang, W. & Cong, Y. Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases. Cell. Mol. Immunol. 18, 866–877 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Jalkanen, S. & Salmi, M. Lymphatic endothelial cells of the lymph node. Nat. Rev. Immunol. 20, 566–578 (2020).

    Article  CAS  PubMed  Google Scholar 

  229. Pei, G. et al. Lymphangiogenesis in kidney and lymph node mediates renal inflammation and fibrosis. Sci. Adv. 5, eaaw5075 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Maarouf, O. H. et al. Repetitive ischemic injuries to the kidneys result in lymph node fibrosis and impaired healing. JCI Insight 3, e120546 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Zhong, J. et al. Kidney injury-mediated disruption of intestinal lymphatics involves dicarbonyl-modified lipoproteins. Kidney Int. 100, 585–596 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Lee, S. A. et al. CD4+ T cell-derived NGAL modifies the outcome of ischemic acute kidney injury. J. Immunol. 204, 586–595 (2020).

    Article  CAS  PubMed  Google Scholar 

  233. Noel, S. et al. Immune checkpoint molecule TIGIT regulates kidney T cell functions and contributes to AKI. J. Am. Soc. Nephrol. 34, 755–771 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Gharaie, S. et al. Single cell and spatial transcriptomics analysis of kidney double negative T lymphocytes in normal and ischemic mouse kidneys. Sci. Rep. 13, 20888 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Rabb, H., Lee, K. & Parikh, C. R. Beyond kidney dialysis and transplantation: what’s on the horizon? J. Clin. Invest. 132, e159308 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Lin, N. Y. C. et al. Renal reabsorption in 3D vascularized proximal tubule models. Proc. Natl Acad. Sci. USA 116, 5399–5404 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Petrosyan, A. et al. A glomerulus-on-a-chip to recapitulate the human glomerular filtration barrier. Nat. Commun. 10, 3656 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Taguchi, A. et al. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell 14, 53–67 (2014).

    Article  CAS  PubMed  Google Scholar 

  239. Takasato, M. et al. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat. Cell Biol. 16, 118–126 (2014).

    Article  CAS  PubMed  Google Scholar 

  240. Morizane, R. et al. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat. Biotechnol. 33, 1193–1200 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Kroll, K. T. et al. Immune-infiltrated kidney organoid-on-chip model for assessing T cell bispecific antibodies. Proc. Natl Acad. Sci. USA 120, e2305322120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

K.L. was supported by grants from Korea Health Industry Development Institute (HI19C1337), National Research Foundation of Korea (NRF-2021R1A6A3A03039863), Samsung Medical Center Grant (SMO1230251) and the Young Investigator Research Grant from the Korean Nephrology Research Foundation (2023). H.R.J. was supported by the National Research Foundation of Korea (2022R1A2B5B01001298, 2019R1A5A2027340), the Korean Fund for Regenerative Medicine (KFRM) grant (22A0302L1-01) funded by the Korean government (the Ministry of Science and ICT, the Ministry of Health & Welfare) and the Korean Health Technology R&D Project through the Korean Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (HR22C1363). H.R. was supported by the US National Institute of Diabetes and Digestive and Kidney Diseases (R01DK104662 and R01DK123342).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, wrote the manuscript, made substantial contributions to discussions of the content, and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Hamid Rabb.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Niels Olsen Saraiva Câmara, David Ferenbach, Xiao-Ming Meng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, K., Jang, H.R. & Rabb, H. Lymphocytes and innate immune cells in acute kidney injury and repair. Nat Rev Nephrol (2024). https://doi.org/10.1038/s41581-024-00875-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41581-024-00875-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing