[go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of cognitive dysfunction in CKD

Abstract

Cognitive impairment is an increasingly recognized major cause of chronic disability and is commonly found in patients with chronic kidney disease (CKD). Knowledge of the relationship between kidney dysfunction and impaired cognition may improve our understanding of other forms of cognitive dysfunction. Patients with CKD are at an increased risk (compared with the general population) of both dementia and its prodrome, mild cognitive impairment (MCI), which are characterized by deficits in executive functions, memory and attention. Brain imaging in patients with CKD has revealed damage to white matter in the prefrontal cortex and, in animal models, in the subcortical monoaminergic and cholinergic systems, accompanied by widespread macrovascular and microvascular damage. Unfortunately, current interventions that target cardiovascular risk factors (such as anti-hypertensive drugs, anti-platelet agents and statins) seem to have little or no effect on CKD-associated MCI, suggesting that the accumulation of uraemic neurotoxins may be more important than disturbed haemodynamic factors or lipid metabolism in MCI pathogenesis. Experimental models show that the brain monoaminergic system is susceptible to uraemic neurotoxins and that this system is responsible for the altered sleep pattern commonly observed in patients with CKD. Neural progenitor cells and the glymphatic system, which are important in Alzheimer disease pathogenesis, may also be involved in CKD-associated MCI. More detailed study of CKD-associated MCI is needed to fully understand its clinical relevance, underlying pathophysiology, possible means of early diagnosis and prevention, and whether there may be novel approaches and potential therapies with wider application to this and other forms of cognitive decline.

Key points

  • Cognitive impairment is more common in patients with chronic kidney disease (CKD) and those with reduced renal function than in the general population.

  • Cognitive dysfunction in patients with CKD ranges in severity from mild cognitive impairment (MCI) to dementia and involves deficiency in multiple cognitive domains, such as memory, attention, language and visuospatial skills, and executive functions.

  • Brain dysfunction in patients with CKD likely results from uraemic neurotoxins interacting with neural progenitor cells, the brain vasculature, the glymphatic system and monoaminergic neurons.

  • Targeting these mechanisms could potentially reduce the burden of dementia in CKD and might aid in the discovery of improved treatments for other forms of cognitive impairment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Prevalence of MCI.
Fig. 2: Brain modifications in CKD.
Fig. 3: The hierarchical organization connecting CKD to behaviour.
Fig. 4: Mechanisms of uraemic toxin transport in the brain.
Fig. 5: Mechanism of action of some uraemic neurotoxins and their interaction with genetic predisposing factors.

Similar content being viewed by others

References

  1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5) 5th edn (American Psychiatric Association, 2013).

  2. Marcos, G. et al. Conversion to dementia in mild cognitive impairment diagnosed with DSM-5 criteria and with Petersen’s criteria. Acta Psychiatr. Scand. 133, 378–385 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Viggiano, D. et al. Mild cognitive impairment and kidney disease: clinical aspects. Nephrol. Dial. Transplant. 35, 10–17 (2019).

    Google Scholar 

  4. Jellinger, K. A. Should the word ‘dementia’ be forgotten? J. Cell. Mol. Med. 14, 2415–2416 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lipnicki, D. M. et al. Risk factors for mild cognitive impairment, dementia and mortality: the Sydney Memory and Ageing Study. J. Am. Med. Dir. Assoc. 18, 388–395 (2017).

    Article  PubMed  Google Scholar 

  6. Brodski, J., Rossell, S. L., Castle, D. J. & Tan, E. J. A systematic review of cognitive impairments associated with kidney failure in adults before natural age-related changes. J. Int. Neuropsychol. Soc. 25, 101–114 (2019).

    Article  PubMed  Google Scholar 

  7. Ekblad, L. L. et al. Albuminuria and microalbuminuria as predictors of cognitive performance in a general population: an 11-year follow-up study. J. Alzheimers Dis. 65, 1053–1054 (2018). A study confirming the role of proteinuria, a marker of endothelial dysfunction, in cognitive impairment; this study is notable for the long follow-up.

    Article  PubMed  Google Scholar 

  8. Martens, R. J. H. et al. Estimated GFR, albuminuria, and cognitive performance: the Maastricht Study. Am. J. Kidney Dis. 69, 179–191 (2017). A large cohort study confirming the role of proteinuria in MCI.

    Article  CAS  PubMed  Google Scholar 

  9. Weiner, D. E. et al. Cognitive function and kidney disease: baseline data from the systolic blood pressure intervention trial (SPRINT). Am. J. Kidney Dis. 70, 357–367 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Berger, I. et al. Cognition in chronic kidney disease: a systematic review and meta-analysis. BMC Med. 14, 1–10 (2016).

    Article  Google Scholar 

  11. Mendley, S. R. et al. Duration of chronic kidney disease reduces attention and executive function in pediatric patients. Kidney Int. 87, 800–806 (2015). A pivotal study demonstrating that even children are at risk of developing cognitive impairment when CKD is present.

    Article  PubMed  Google Scholar 

  12. Sacre, J. W. et al. Associations of chronic kidney disease markers with cognitive function: a 12-year follow-up study. J. Alzheimers Dis. 70, 1–12 (2018).

    Google Scholar 

  13. O’Lone, E. et al. Cognition in people with end-stage kidney disease treated with hemodialysis: a systematic review and meta-analysis. Am. J. Kidney Dis. 67, 925–935 (2016).

    Article  PubMed  Google Scholar 

  14. Harhay, M. N. et al. Cognitive impairment in non–dialysis-dependent CKD and the transition to dialysis: findings from the chronic renal insufficiency cohort (CRIC) study. Am. J. Kidney Dis. 72, 499–508 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chu, N. M. et al. Frailty and changes in cognitive function after kidney transplantation. J. Am. Soc. Nephrol. 30, 336–345 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Drew, D. A., Weiner, D. E. & Sarnak, M. J. Cognitive impairment in CKD: pathophysiology, management, and prevention. Am. J. Kidney Dis. 74, 782–790 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zammit, A. R., Katz, M. J., Bitzer, M. & Lipton, R. B. Cognitive impairment and dementia in older adults with chronic kidney disease: a review. Alzheimer Dis. Assoc. Disord. 30, 357–366 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chillon, J.-M., Massy, Z. A. & Stengel, B. Neurological complications in chronic kidney disease patients. Nephrol. Dial. Transpl. 31, 1606–1614 (2016).

    Article  CAS  Google Scholar 

  19. Kurella Tamura, M. et al. Vascular risk factors and cognitive impairment in chronic kidney disease: the chronic renal insufficiency cohort (CRIC) study. Clin. J. Am. Soc. Nephrol. 6, 248–256 (2011). A landmark study of cognitive impairment in CKD.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kelly, D. & Rothwell, P. M. Disentangling the multiple links between renal dysfunction and cerebrovascular disease. J. Neurol. Neurosurg. Psychiatry 91, 88–97 (2019).

    Article  PubMed  Google Scholar 

  21. Lu, R., Kiernan, M. C., Murray, A., Rosner, M. H. & Ronco, C. Kidney–brain crosstalk in the acute and chronic setting. Nat. Rev. Nephrol. 11, 707–719 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Lizio, R. et al. Different abnormalities of cortical neural synchronization mechanisms in patients with mild cognitive impairment due to Alzheimer’s and chronic kidney diseases: an EEG study. J. Alzheimers Dis. 65, 897–915 (2018). A study directly comparing cognitive impairment in Alzheimer disease with that in CKD.

    Article  PubMed  Google Scholar 

  23. Albert, M. S. et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging–Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers. Dement. 7, 270–279 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Burns, C. M. et al. Prevalence and risk of severe cognitive impairment in advanced chronic kidney disease. J. Gerontol. A Biol. Sci. Med. Sci. 73, 393–399 (2018).

    Article  PubMed  Google Scholar 

  25. Otobe, Y. et al. Mild cognitive impairment in older adults with pre-dialysis patients with chronic kidney disease: prevalence and association with physical function. Nephrology 24, 50–55 (2019).

    Article  PubMed  Google Scholar 

  26. Hobson, P., Lewis, A., Nair, H., Wong, S. & Kumwenda, M. How common are neurocognitive disorders in patients with chronic kidney disease and diabetes? Results from a cross-sectional study in a community cohort of patients in North Wales, UK. BMJ Open 8, e023520 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kalirao, P. et al. Cognitive impairment in peritoneal dialysis patients. Am. J. Kidney Dis. 57, 612–620 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Manly, J. J. et al. Frequency and course of mild cognitive impairment in a multiethnic community. Ann. Neurol. 63, 494–506 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ponjoan, A. et al. Epidemiology of dementia: prevalence and incidence estimates using validated electronic health records from primary care. Clin. Epidemiol. 11, 217–228 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. McAdams-DeMarco, M. A. et al. Dementia and Alzheimer’s disease among older kidney transplant recipients. J. Am. Soc. Nephrol. 28, 1575–1583 (2017). An important study of cognitive impairment in kidney transplant recipients.

    Article  CAS  PubMed  Google Scholar 

  31. van der Flier, W. M. & Scheltens, P. Epidemiology and risk factors of dementia. J. Neurol. Neurosurg. Psychiatry 76, v2–v7 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kurella Tamura, M. & Yaffe, K. Dementia and cognitive impairment in ESRD: diagnostic and therapeutic strategies. Kidney Int. 79, 14–22 (2011).

    Article  PubMed  Google Scholar 

  33. Kuo, Y.-T. et al. Risk of dementia in patients with end-stage renal disease under maintenance dialysis — a nationwide population-based study with consideration of competing risk of mortality. Alzheimers Res. Ther. 11, 31 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. McAdams-Demarco, M. A. et al. Frailty and cognitive function in incident hemodialysis patients. Clin. J. Am. Soc. Nephrol. 10, 2181–2189 (2015). A landmark study of cognitive dysfunction in patients on haemodialysis.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fukunishi, I. et al. Psychiatric disorders among patients undergoing hemodialysis therapy. Nephron 91, 344–347 (2002).

    Article  PubMed  Google Scholar 

  36. US Renal Data System. USRDS 2005 annual data report: atlas of end-stage renal disease in the United States 140–143 (National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, 2005).

  37. McAdams-DeMarco, M. A. et al. Dementia, Alzheimer’s disease, and mortality after hemodialysis initiation. Clin. J. Am. Soc. Nephrol. 13, 1339–1347 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Joosten, H. et al. Association of cognitive function with albuminuria and eGFR in the general population. Clin. J. Am. Soc. Nephrol. 6, 1400–1409 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Madan, P., Kalra, O. P., Agarwal, S. & Tandon, O. P. Cognitive impairment in chronic kidney disease. Nephrol. Dial. Transpl. 22, 440–444 (2007).

    Article  Google Scholar 

  40. Singh, N. P. et al. Effect of improvement in anemia on electroneurophysiological markers (P300) of cognitive dysfunction in chronic kidney disease. Hemodial. Int. 10, 267–273 (2006).

    Article  PubMed  Google Scholar 

  41. Sharma, A. et al. Impact of cognitive function change on mortality in renal transplant and end-stage renal disease patients. Am. J. Nephrol. 44, 462–472 (2016).

    Article  PubMed  Google Scholar 

  42. Qiu, Y. et al. Structural and functional brain alterations in end stage renal disease patients on routine hemodialysis: a voxel-based morphometry and resting state functional connectivity study. PLoS One 9, e98346 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Song, S. H., Kim, I. J., Kim, S.-J., Kwak, I. S. & Kim, Y.-K. Cerebral glucose metabolism abnormalities in patients with major depressive symptoms in pre-dialytic chronic kidney disease: statistical parametric mapping analysis of F-18-FDG PET, a preliminary study. Psychiatry Clin. Neurosci. 62, 554–561 (2008).

    Article  PubMed  Google Scholar 

  44. Tian, X. et al. The comparison of cognitive function and risk of dementia in CKD patients under peritoneal dialysis and hemodialysis: a PRISMA-compliant systematic review and meta-analysis. Medicine 98, e14390 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Boccardi, M. et al. The MRI pattern of frontal and temporal brain atrophy in fronto-temporal dementia. Neurobiol. Aging 24, 95–103 (2003).

    Article  PubMed  Google Scholar 

  46. Blamire, A. M. MR approaches in neurodegenerative disorders. Prog. Nucl. Magn. Reson. Spectrosc. 108, 1–16 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Palkovits, M. et al. Neuronal activation in the central nervous system of rats in the initial stage of chronic kidney disease — modulatory effects of losartan and moxonidine. PLoS One 8, e66543 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mazumder, M. K., Paul, R., Bhattacharya, P. & Borah, A. Neurological sequel of chronic kidney disease: from diminished Acetylcholinesterase activity to mitochondrial dysfunctions, oxidative stress and inflammation in mice brain. Sci. Rep. 9, 3097 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Deng, G., Vaziri, N. D., Jabbari, B., Ni, Z. & Yan, X. X. Increased tyrosine nitration of the brain in chronic renal insufficiency: reversal by antioxidant therapy and angiotensin-converting enzyme inhibition. J. Am. Soc. Nephrol. 12, 1892–1899 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Jones, D. J. W. et al. The nature of impairments of memory in patients with end-stage renal disease (ESRD). Physiol. Behav. 147, 324–333 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Kim, J. W., Ha, G. Y. & Jung, Y. W. Chronic renal failure induces cell death in rat hippocampal CA1 via upregulation of αCaMKII/NR2A synaptic complex and phosphorylated GluR1-containing AMPA receptor cascades. Kidney Res. Clin. Pract. 33, 132–138 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Viggiano, D. et al. Quantifying barcodes of dendritic spines using entropy-based metrics. Sci. Rep. 5, 14622 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Viggiano, D. et al. Information content of dendritic spines after motor learning. Behav. Brain Res. 336, 256–260 (2018).

    Article  PubMed  Google Scholar 

  54. Kurella, M., Yaffe, K., Shlipak, M. G., Wenger, N. K. & Chertow, G. M. Chronic kidney disease and cognitive impairment in menopausal women. Am. J. Kidney Dis. 45, 66–76 (2005).

    Article  PubMed  Google Scholar 

  55. Puy, L. et al. Cognitive impairments and dysexecutive behavioral disorders in chronic kidney disease. J. Neuropsychiatry Clin. Neurosci. 30, 310–317 (2018).

    Article  PubMed  Google Scholar 

  56. Yaffe, K. et al. Chronic kidney disease and cognitive function in older adults: findings from the Chronic Renal Insufficiency Cohort (CRIC) cognitive study. J. Am. Geriatr. Soc. 58, 338–345 (2010). A study linking lower kidney function with cognitive impairment in older patients with CKD.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Vemuri, P. et al. Association of kidney function biomarkers with brain MRI findings: the BRINK study. J. Alzheimers Dis. 55, 1069–1082 (2017). A landmark paper reporting the brain MRI findings in a large cohort, a substantial proportion of which were patients with CKD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hartung et al. Brain magnetic resonance imaging findings in children and young adults with CKD. Am. J. Kidney Dis. 72, 349–359 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Giorgio, A. et al. Relevance of brain lesion location for cognition in vascular mild cognitive impairment. NeuroImage Clin. 22, 101789 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Troen, A. M. et al. Cognitive dysfunction and depression in adult kidney transplant recipients: baseline findings from the FAVORIT Ancillary Cognitive Trial (FACT). J. Ren. Nutr. 22, 268–276.e3 (2012).

    Article  PubMed  Google Scholar 

  61. Lee, S. C. et al. The association between kidney function and cognitive decline in community-dwelling, elderly Japanese people. J. Am. Med. Dir. Assoc. 16, 349.e1–349.e5 (2015).

    Article  Google Scholar 

  62. Drew, D. A. et al. Cognitive decline and its risk factors in prevalent hemodialysis patients. Am. J. Kidney Dis. 69, 780–787 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Griva, K. et al. Neuropsychological performance after kidney transplantation: a comparison between transplant types and in relation to dialysis and normative data. Nephrol. Dial. Transplant. 19, 1866–1874 (2004).

    Article  PubMed  Google Scholar 

  64. Matsuda-Abedini, M. et al. Brain abnormalities in children and adolescents with chronic kidney disease. Pediatr. Res. 84, 387–392 (2018). An important study detailing the morphological changes that occur in the brain in children with CKD.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Johnson, K. A., Fox, N. C., Sperling, R. A. & Klunk, W. E. Brain imaging in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2, a006213 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Lenzenweger, M. F. Thinking clearly about the endophenotype-intermediate phenotype-biomarker distinctions in developmental psychopathology research. Dev. Psychopathol. 25, 1347–1357 (2013).

    Article  PubMed  Google Scholar 

  67. Maung, S. C., El Sara, A., Chapman, C., Cohen, D. & Cukor, D. Sleep disorders and chronic kidney disease. World J. Nephrol. 5, 224–232 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kennedy, C., Ryan, S. A., Kane, T., Costello, R. W. & Conlon, P. J. The impact of change of renal replacement therapy modality on sleep quality in patients with end-stage renal disease: a systematic review and meta-analysis. J. Nephrol. 31, 61–70 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Elias, R. M., Chan, C. T. & Bradley, T. D. Altered sleep structure in patients with end-stage renal disease. Sleep Med. 20, 67–71 (2016).

    Article  PubMed  Google Scholar 

  70. Zoccali, C., Mallamaci, F. & Tripepi, G. Sleep apnea in renal patients. J. Am. Soc. Nephrol. 12, 2854–2859 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Marrone, O. et al. Chronic kidney disease in European patients with obstructive sleep apnea: the ESADA cohort study. J. Sleep. Res. 25, 739–745 (2016).

    Article  PubMed  Google Scholar 

  72. Forni Ogna, V. et al. Prevalence and diagnostic approach to sleep apnea in hemodialysis patients: a population study. Biomed. Res. Int. 2015, 103686 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Huang, S.-T. et al. Risk, severity, and predictors of obstructive sleep apnea in hemodialysis and peritoneal dialysis patients. Int. J. Environ. Res. Public Health 15, E2377 (2018).

    Article  PubMed  Google Scholar 

  74. Tsampalieros, A. et al. Obstructive sleep apnea and hypertension in pediatric chronic kidney disease. Pediatr. Nephrol. 34, 2361–2370 (2019).

    Article  PubMed  Google Scholar 

  75. Nigam, G., Pathak, C. & Riaz, M. A systematic review of central sleep apnea in adult patients with chronic kidney disease. Sleep Breath. 20, 957–964 (2016).

    Article  PubMed  Google Scholar 

  76. Tada, T. et al. The predictors of central and obstructive sleep apnoea in haemodialysis patients. Nephrol. Dial. Transpl. 22, 1190–1197 (2007).

    Article  Google Scholar 

  77. Zoccali, C., Mallamaci, F. & Tripepi, G. Nocturnal hypoxemia predicts incident cardiovascular complications in dialysis patients. J. Am. Soc. Nephrol. 13, 729–733 (2002).

    Article  PubMed  Google Scholar 

  78. Zoccali, C., Mallamaci, F., Tripepi, G. & Benedetto, F. A. Autonomic neuropathy is linked to nocturnal hypoxaemia and to concentric hypertrophy and remodelling in dialysis patients. Nephrol. Dial. Transpl. 16, 70–77 (2001).

    Article  CAS  Google Scholar 

  79. Wennberg, A. M. V., Wu, M. N., Rosenberg, P. B. & Spira, A. P. Sleep disturbance, cognitive decline, and dementia: a review. Semin. Neurol. 37, 395–406 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Matsunaga, Y. et al. Effects of zolpidem/triazolam on cognitive performance 12 hours after acute administration. Sleep Med. 52, 213–218 (2018).

    Article  PubMed  Google Scholar 

  81. Suzuki, H. et al. Associations of regional brain structural differences with aging, modifiable risk factors for dementia, and cognitive performance. JAMA Netw. Open 2, e1917257 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Viggiano, D. The hyperactive syndrome: metanalysis of genetic alterations, pharmacological treatments and brain lesions which increase locomotor activity. Behav. Brain Res. 194, 1–14 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Aguilera, A., Sánchez-Tomero, J. A. & Selgas, R. Brain activation in uremic anorexia. J. Ren. Nutr. 17, 57–61 (2007).

    Article  PubMed  Google Scholar 

  84. Tran, J., Ayers, E., Verghese, J. & Abramowitz, M. Gait abnormalities and the risk of falls in CKD. Clin. J. Am. Soc. Nephrol. 14, 983–993 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Arnold, R., Issar, T., Krishnan, A. V. & Pussell, B. A. Neurological complications in chronic kidney disease. JRSM Cardiovasc. Dis. 5, 2048004016677687 (2016).

    PubMed  PubMed Central  Google Scholar 

  86. Hamed, S. A. Neurologic conditions and disorders of uremic syndrome of chronic kidney disease: presentations, causes, and treatment strategies. Expert Rev. Clin. Pharmacol. 12, 61–90 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. Owolabi, L. F. et al. Related factors and predictors of cognitive dysfunction in chronic kidney disease on maintenance hemodialysis in Nigeria. J. Neurosci. Rural. Pract. 7, S62–S67 (2016).

    PubMed  PubMed Central  Google Scholar 

  88. Hailpern, S. M., Melamed, M. L., Cohen, H. W. & Hostetter, T. H. Moderate chronic kidney disease and cognitive function in adults 20 to 59 years of age: Third National Health and Nutrition Examination Survey (NHANES III). J. Am. Soc. Nephrol. 18, 2205–2213 (2007).

    Article  PubMed  Google Scholar 

  89. Kumar, R. B. & Bhat, J. S. Voice in chronic renal failure. J. Voice 24, 690–693 (2010).

    Article  PubMed  Google Scholar 

  90. Marquis, S. et al. Independent predictors of cognitive decline in healthy elderly persons. Arch. Neurol. 59, 601–606 (2002).

    Article  PubMed  Google Scholar 

  91. Szczepańska-Gieracha, J., Cieślik, B., Chamela-Bilińska, D. & Kuczyński, M. Postural stability of elderly people with cognitive impairments. Am. J. Alzheimers Dis. Other Demen. 31, 241–246 (2016).

    Article  PubMed  Google Scholar 

  92. Tosto, G., Monsell, S. E., Hawes, S. E. & Mayeux, R. Pattern of extrapyramidal signs in Alzheimer’s disease. J. Neurol. 262, 2548–2556 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hildebrandt, F. Genetic kidney diseases. Lancet 375, 1287–1295 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Landini, S. et al. Reverse phenotyping after whole-exome sequencing in steroid-resistant nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 15, 89–100 (2020).

    Article  PubMed  CAS  Google Scholar 

  95. Verbitsky, M. et al. Genomic disorders and neurocognitive impairment in pediatric CKD. J. Am. Soc. Nephrol. 28, 2303–2309 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Caterino, M. et al. Urine proteomics revealed a significant correlation between urine-fibronectin abundance and estimated-GFR decline in patients with Bardet-Biedl Syndrome. Kidney Blood Press. Res. 43, 389–405 (2018).

    Article  CAS  PubMed  Google Scholar 

  97. Körver, S. et al. Predictors of objective cognitive impairment and subjective cognitive complaints in patients with Fabry disease. Sci. Rep. 9, 188 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Sigurdardottir, S., Myers, S. M., Woodworth, J. M. & Raymond, G. V. Mental retardation and seizure disorder in Schimke immunoosseous dysplasia. Am. J. Med. Genet. 90, 294–298 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Brancati, F., Dallapiccola, B. & Valente, E. M. Joubert Syndrome and related disorders. Orphanet J. Rare Dis. 5, 20 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Liu, A. J. et al. Association of cognitive and behavioral features between adults with tuberous sclerosis and frontotemporal dementia. JAMA Neurol. 77, 358–366 (2019).

    Article  PubMed Central  Google Scholar 

  101. Bökenkamp, A. & Ludwig, M. The oculocerebrorenal syndrome of Lowe: an update. Pediatr. Nephrol. 31, 2201–2212 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Groopman, E. E. et al. Diagnostic utility of exome sequencing for kidney disease. N. Engl. J. Med. 380, 142–151 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Mengel-From, J. et al. Genetic variants in KLOTHO associate with cognitive function in the oldest old group. J. Gerontol. A Biol. Sci. Med. Sci. 71, 1151–1159 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Shardell, M. et al. Plasma Klotho and cognitive decline in older adults: findings from the InCHIANTI study. J. Gerontol. A Biol. Sci. Med. Sci. 71, 677–682 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Wuttke, M. et al. A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nat. Genet. 51, 957–972 (2019). A keystone large-scale meta-analysis study identifying genetic loci associated with CKD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. De Sanctis, C., Bellenchi, G. C. & Viggiano, D. A meta-analytic approach to genes that are associated with impaired and elevated spatial memory performance. Psychiatry Res. 261, 508–516 (2018).

    Article  PubMed  Google Scholar 

  107. Moreno-Grau, S. et al. Genome-wide association analysis of dementia and its clinical endophenotypes reveal novel loci associated with Alzheimer’s disease and three causality networks: The GR@ACE project. Alzheimers Dement. 15, 1333–1347 (2019).

    Article  PubMed  Google Scholar 

  108. Hunter, D. J. & Drazen, J. M. Has the genome granted our wish yet? N. Engl. J. Med. 380, 2391–2393 (2019).

    Article  PubMed  Google Scholar 

  109. Rodríguez-Rodríguez, E. et al. Genetic risk score predicting accelerated progression from mild cognitive impairment to Alzheimer’s disease. J. Neural Transm. 120, 807–812 (2013).

    Article  PubMed  CAS  Google Scholar 

  110. Noguchi, Y., Nagasawa, H., Tachi, T., Tsuchiya, T. & Teramachi, H. Signal detection of oral drug-induced dementia in chronic kidney disease patients using association rule mining and Bayesian confidence propagation neural network. Pharmazie 74, 570–574 (2019).

    CAS  PubMed  Google Scholar 

  111. Jessen, N. A., Munk, A. S. F., Lundgaard, I. & Nedergaard, M. The glymphatic system: a beginner’s guide. Neurochem. Res. 40, 2583–2599 (2015). A useful introduction to the glymphatic system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Shah, S. V., Shukla, A. M., Bose, C., Basnakian, A. G. & Rajapurkar, M. Recent advances in understanding the pathogenesis of atherosclerosis in CKD patients. J. Ren. Nutr. 25, 205–208 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Ali, S., Dave, N., Virani, S. S. & Navaneethan, S. D. Primary and secondary prevention of cardiovascular disease in patients with chronic kidney disease. Curr. Atheroscler. Rep. 21, 32 (2019).

    Article  PubMed  Google Scholar 

  114. Bosch, A. et al. Retinal capillary and arteriolar changes in patients with chronic kidney disease. Microvasc. Res. 118, 121–127 (2018).

    Article  PubMed  Google Scholar 

  115. Gennip, A. C. E. van et al. Endothelial dysfunction and low-grade inflammation in the transition to renal replacement therapy. PLoS One 14, e0222547 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lau, W. L. et al. Chronic kidney disease increases cerebral microbleeds in mouse and man. Transl. Stroke Res. 11, 122–134 (2020).

    Article  PubMed  Google Scholar 

  117. Nortley, R. et al. Amyloid beta oligomers constrict human capillaries in Alzheimer’s disease via signaling to pericytes. Science 365, eaav9518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Katherine, R. et al. Clinical characteristics of and risk factors for chronic kidney disease among adults and children: an analysis of the CURE-CKD registry. JAMA Netw. Open 2, e1918169 (2019).

    Article  Google Scholar 

  119. Walker, K. et al. Association of midlife to late-life blood pressure patterns with incident dementia. JAMA 322, 535–545 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Jiang, X. L. et al. Cerebral blood flow changes in hemodialysis and peritoneal dialysis patients: an arterial-spin labeling MR imaging. Metab. Brain Dis. 31, 929–936 (2016).

    Article  CAS  PubMed  Google Scholar 

  121. Liu, H.-S. et al. Regional cerebral blood flow in children and young adults with chronic kidney disease. Radiology 288, 849–858 (2018). A study reporting important functional MRI data in patients with CKD.

    Article  PubMed  Google Scholar 

  122. Cheng, B.-C. et al. Decreased cerebral blood flow and improved cognitive function in patients with end-stage renal disease after peritoneal dialysis: an arterial spin-labelling study. Eur. Radiol. 29, 1415–1424 (2019).

    Article  PubMed  Google Scholar 

  123. Moura, A. et al. Type of vascular access and location in online hemodiafiltration and its association with patient’s perception of health-related quality of life. J. Vasc. Access. 15, 175–182 (2014).

    Article  PubMed  Google Scholar 

  124. McGuire, S. et al. Hemodynamic instability during dialysis: the potential role of intradialytic exercise. Biomed. Res. Int. 2018, 8276912 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Polinder-Bos, H. A. et al. Hemodialysis induces an acute decline in cerebral blood flow in elderly patients. J. Am. Soc. Nephrol. 29, 1317–1325 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Farhoudi, M., Abedi Azar, S. & Abdi, R. Brain hemodynamics in patients with end-stage renal disease between hemodialysis sessions. Iran. J. Kidney Dis. 6, 110–113 (2012).

    PubMed  Google Scholar 

  127. Tamura, M. K. et al. Chronic kidney disease, cerebral blood flow, and white matter volume in hypertensive adults. Neurology 86, 1208–1216 (2016).

    Article  PubMed  CAS  Google Scholar 

  128. Markus, H. S. Genes, endothelial function and cerebral small vessel disease in man. Exp. Physiol. 93, 121–127 (2008).

    Article  PubMed  Google Scholar 

  129. Pabbidi, M. R. et al. Identification of a region of rat chromosome 1 that impairs the myogenic response and autoregulation of cerebral blood flow in fawn-hooded hypertensive rats. Am. J. Physiol. Heart Circ. Physiol. 304, H311–H317 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Fan, F. et al. Impaired myogenic response and autoregulation of cerebral blood flow is rescued in CYP4A1 transgenic Dahl salt-sensitive rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 308, R379–R390 (2015).

    Article  CAS  PubMed  Google Scholar 

  131. Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 4, 147ra111 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Rasmussen, M. K., Mestre, H. & Nedergaard, M. The glymphatic pathway in neurological disorders. Lancet Neurol. 17, 1016–1024 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Plog, B. A. & Nedergaard, M. The glymphatic system in central nervous system health and disease: past, present, and future. Annu. Rev. Pathol. 13, 379–394 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Palmer, K., Mitolo, M., Burgio, F., Meneghello, F. & Venneri, A. Sleep disturbance in mild cognitive impairment and association with cognitive functioning. A case-control study. Front. Aging Neurosci. 10, 360 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Menon, R. N. et al. Do quantified sleep architecture abnormalities underlie cognitive disturbances in amnestic mild cognitive impairment? J. Clin. Neurosci. 67, 85–92 (2019).

    Article  PubMed  Google Scholar 

  136. Ju, Y.-E. S., Zangrilli, M. A., Finn, M. B., Fagan, A. M. & Holtzman, D. M. Obstructive sleep apnea treatment, slow wave activity, and amyloid-β. Ann. Neurol. 85, 291–295 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Mawuenyega, K. G. et al. Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330, 1774 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Viggiano, D. et al. Urate-lowering agents in asymptomatic hyperuricemia: role of urine sediment analysis and musculoskeletal ultrasound. Kidney Blood Press. Res. 43, 606–615 (2018).

    Article  CAS  PubMed  Google Scholar 

  139. Yirmiya, R. & Goshen, I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav. Immun. 25, 181–213 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Yang, G. et al. Peripheral elevation of TNF-α leads to early synaptic abnormalities in the mouse somatosensory cortex in experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 110, 10306–10311 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Li, C. et al. Roles of neuropeptide Y in neurodegenerative and neuroimmune diseases. Front. Neurosci. 13, 869 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Baker, D. G. et al. Characterization of cerebrospinal fluid (CSF) and plasma NPY levels in normal volunteers over a 24-h timeframe. Psychoneuroendocrinology 38, 2378–2382 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Kastin, A. J. & Akerstrom, V. Nonsaturable entry of neuropeptide Y into brain. Am. J. Physiol. 276, E479–E482 (1999).

    CAS  PubMed  Google Scholar 

  144. Zoccali, C. et al. Neuropeptide Y predicts cardiovascular events in chronic kidney disease patients: a cohort study. J. Hypertens. 37, 1359–1365 (2019).

    Article  CAS  PubMed  Google Scholar 

  145. Barceló, A. et al. Neuropeptide Y and leptin in patients with obstructive sleep apnea syndrome: role of obesity. Am. J. Respir. Crit. Care Med. 171, 183–187 (2005).

    Article  PubMed  Google Scholar 

  146. Zoccali, C. et al. Prospective study of neuropeptide y as an adverse cardiovascular risk factor in end-stage renal disease. J. Am. Soc. Nephrol. 14, 2611–2617 (2003).

    Article  CAS  PubMed  Google Scholar 

  147. Cannon, J. A. et al. Cognitive impairment and heart failure: systematic review and meta-analysis. J. Card. Fail. 23, 464–475 (2017).

    Article  PubMed  Google Scholar 

  148. Bründl, E. et al. Excessive release of endogenous neuropeptide Y into cerebrospinal fluid after treatment of spontaneous subarachnoid haemorrhage and its possible impact on self-reported neuropsychological performance — results of a prospective clinical pilot study on good-grade patients. Neurol. Res. 40, 1001–1013 (2018).

    Article  PubMed  Google Scholar 

  149. Singh, P. et al. Neuropeptide Y regulates a vascular gateway for hematopoietic stem and progenitor cells. J. Clin. Invest. 127, 4527–4540 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Choi, B. et al. Elevated neuropeptide Y in endothelial dysfunction promotes macrophage infiltration and smooth muscle foam cell formation. Front. Immunol. 10, 1701 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zhou, J.-R. et al. Neuropeptide Y induces secretion of high-mobility group Box 1 protein in mouse macrophage via Pkc/Erk dependent pathway. J. Neuroimmunol. 260, 55–59 (2013).

    Article  CAS  PubMed  Google Scholar 

  152. Geloso, M. C. et al. Cellular targets for neuropeptide Y-mediated control of adult neurogenesis. Front. Cell. Neurosci. 9, 85 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Lourida, I. et al. Parathyroid hormone, cognitive function and dementia: a systematic review. PLoS One 10, e0127574 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Kellett, K. A., Williams, J., Vardy, E. R., Smith, A. D. & Hooper, N. M. Plasma alkaline phosphatase is elevated in Alzheimer’s disease and inversely correlates with cognitive function. Int. J. Mol. Epidemiol. Genet. 2, 114–121 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Hagström, E. et al. Plasma parathyroid hormone is associated with vascular dementia and cerebral hyperintensities in two community-based cohorts. J. Clin. Endocrinol. Metab. 99, 4181–4189 (2014).

    Article  PubMed  CAS  Google Scholar 

  156. Díaz-Hernández, M. et al. Tissue-nonspecific alkaline phosphatase promotes the neurotoxicity effect of extracellular tau. J. Biol. Chem. 285, 32539–32548 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Vervloet, M. Renal and extrarenal effects of fibroblast growth factor 23. Nat. Rev. Nephrol. 15, 109–120 (2019).

    Article  CAS  PubMed  Google Scholar 

  158. McGrath, E. R. et al. Circulating fibroblast growth factor 23 levels and incident dementia: the Framingham Heart Study. PLoS One 14, e0213321 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kuro-O, M. The Klotho proteins in health and disease. Nat. Rev. Nephrol. 15, 27–44 (2019).

    Article  CAS  PubMed  Google Scholar 

  160. Zou, D. et al. The role of klotho in chronic kidney disease. BMC Nephrol. 19, 285 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kuriyama, N. et al. Association between α-Klotho and deep white matter lesions in the brain: a pilot case control study using brain MRI. J. Alzheimers Dis. 61, 145–155 (2018).

    Article  CAS  PubMed  Google Scholar 

  162. Erickson, C. M. et al. KLOTHO heterozygosity attenuates APOE4-related amyloid burden in preclinical AD. Neurology 92, e1878–e1889 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Paroni, G. et al. Klotho at the edge of Alzheimer’s disease and senile depression. Mol. Neurobiol. 56, 190–1920 (2019).

    Article  CAS  Google Scholar 

  164. Zhu, L. et al. Klotho controls the brain–immune system interface in the choroid plexus. Proc. Natl Acad. Sci. USA 115, E11388–E11396 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Li, D. et al. Enhanced expression of secreted α-Klotho in the hippocampus alters nesting behavior and memory formation in mice. Front. Cell. Neurosci. 13, 133 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Nagai, T. et al. Cognition impairment in the genetic model of aging klotho gene mutant mice: a role of oxidative stress. FASEB J. 17, 50–52 (2003).

    Article  CAS  PubMed  Google Scholar 

  167. Laszczyk, A. M. et al. FGF-23 deficiency impairs hippocampal-dependent cognitive function. eNeuro 6, ENEURO.0469-18.2019 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Kosakai, A. et al. Degeneration of mesencephalic dopaminergic neurons in klotho mouse related to vitamin D exposure. Brain Res. 1382, 109–117 (2011).

    Article  CAS  PubMed  Google Scholar 

  169. Selamet, U. et al. Serum calcitriol concentrations and kidney function decline, heart failure, and mortality in elderly community-living adults: the health, aging, and body composition study. Am. J. Kidney Dis. 72, 419–428 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Cui, X., Gooch, H., Petty, A., McGrath, J. J. & Eyles, D. Vitamin D and the brain: Genomic and non-genomic actions. Mol. Cell. Endocrinol. 453, 131–143 (2017).

    Article  CAS  PubMed  Google Scholar 

  171. Mayne, P. E. & Burne, T. H. J. Vitamin D in synaptic plasticity, cognitive function, and neuropsychiatric illness. Trends Neurosci. 42, 293–306 (2019).

    Article  CAS  PubMed  Google Scholar 

  172. Goodwill, A. M. & Szoeke, C. A systematic review and meta-analysis of the effect of low vitamin D on cognition. J. Am. Geriatr. Soc. 65, 2161–2168 (2017).

    Article  PubMed  Google Scholar 

  173. Sorrells, S. F. et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555, 377–381 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Ma, D. K., Bonaguidi, M. A., Ming, G.-L. & Song, H. Adult neural stem cells in the mammalian central nervous system. Cell Res. 19, 672–682 (2009).

    Article  CAS  PubMed  Google Scholar 

  175. Martino, G. & Pluchino, S. The therapeutic potential of neural stem cells. Nat. Rev. Neurosci. 7, 395–406 (2006).

    Article  CAS  PubMed  Google Scholar 

  176. De Feo, D., Merlini, A., Laterza, C. & Martino, G. Neural stem cell transplantation in central nervous system disorders: from cell replacement to neuroprotection. Curr. Opin. Neurol. 25, 322–333 (2012).

    Article  PubMed  CAS  Google Scholar 

  177. Meng, C., Zhang, J.-C., Shi, R.-L., Zhang, S.-H. & Yuan, S.-Y. Inhibition of interleukin-6 abolishes the promoting effects of pair housing on post-stroke neurogenesis. Neuroscience 307, 160–170 (2015).

    Article  CAS  PubMed  Google Scholar 

  178. Wang, J. et al. Activated regulatory T cell regulates neural stem cell proliferation in the subventricular zone of normal and ischemic mouse brain through interleukin 10. Front. Cell. Neurosci. 9, 361 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Widera, D., Mikenberg, I., Elvers, M., Kaltschmidt, C. & Kaltschmidt, B. Tumor necrosis factor alpha triggers proliferation of adult neural stem cells via IKK/NF-kappaB signaling. BMC Neurosci. 7, 64 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Kokaia, Z., Martino, G., Schwartz, M. & Lindvall, O. Cross-talk between neural stem cells and immune cells: the key to better brain repair? Nat. Neurosci. 15, 1078–1087 (2012).

    Article  CAS  PubMed  Google Scholar 

  181. Liu, Q. et al. Neural stem cells sustain natural killer cells that dictate recovery from brain inflammation. Nat. Neurosci. 19, 243–252 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Mohammad, M. G. et al. Immune cell trafficking from the brain maintains CNS immune tolerance. J. Clin. Invest. 124, 1228–1241 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Skardelly, M. et al. The influence of immunosuppressive drugs on neural stem/progenitor cell fate in vitro. Exp. Cell Res. 319, 3170–3181 (2013).

    Article  CAS  PubMed  Google Scholar 

  184. Rudenko, A. et al. Tet1 is critical for neuronal activity-regulated gene expression and memory extinction. Neuron 79, 1109–1122 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Zhou, H., Wang, B., Sun, H., Xu, X. & Wang, Y. Epigenetic regulations in neural stem cells and neurological diseases. Stem Cell Int. 2018, 6087143 (2018).

    Google Scholar 

  186. Posner, J. B., Plum, F., Saper, C. B. & Schiff, N. Plum and Posner’s Diagnosis of Stupor and Coma (Oxford Univ. Press, 2007).

  187. Kelly, D. M. The role of dialysis in the pathogenesis and treatment of dementia. Nephrol. Dial. Transpl. 34, 1080–1083 (2019).

    Article  CAS  Google Scholar 

  188. Giang, L. M. et al. Cognitive function and dialysis adequacy: no clear relationship. Am. J. Nephrol. 33, 33–38 (2011).

    Article  PubMed  Google Scholar 

  189. Lin, Y.-T. et al. Comparison of dementia risk between end stage renal disease patients with hemodialysis and peritoneal dialysis — a population based study. Sci. Rep. 5, 8224 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Joshee, P., Wood, A. G., Wood, E. R. & Grunfeld, E. A. Meta-analysis of cognitive functioning in patients following kidney transplantation. Nephrol. Dial. Transpl. 33, 1268–1277 (2018).

    Article  CAS  Google Scholar 

  191. Gupta, A. et al. Cognitive function and white matter changes associated with renal transplantation. Am. J. Nephrol. 43, 50–57 (2016).

    Article  CAS  PubMed  Google Scholar 

  192. SPRINT MIND Investigators for the SPRINT Research Group. et al. Association of intensive vs standard blood pressure control with cerebral white matter lesions. JAMA 322, 524–534 (2019). A large study detailing the effects of intensive blood pressure control on the brain.

    Article  Google Scholar 

  193. Brady, C. B. et al. Homocysteine lowering and cognition in CKD: the Veterans Affairs homocysteine study. Am. J. Kidney Dis. 54, 440–449 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Abu Ahmad, N. et al. L-Carnitine improves cognitive and renal functions in a rat model of chronic kidney disease. Physiol. Behav. 164, 182–188 (2016).

    Article  CAS  PubMed  Google Scholar 

  195. Farina, N., Isaac, M. G., Clark, A. R., Rusted, J. & Tabet, N. Vitamin E for Alzheimer’s dementia and mild cognitive impairment. Cochrane Database Syst. Rev. 11, CD002854 (2012).

    PubMed  Google Scholar 

  196. Fujisaki, K. et al. Cerebral oxidative stress induces spatial working memory dysfunction in uremic mice: neuroprotective effect of tempol. Nephrol. Dial. Transpl. 29, 529–538 (2014).

    Article  CAS  Google Scholar 

  197. Smith, P. J. & Blumenthal, J. A. Dietary factors and cognitive decline. J. Prev. Alzheimers Dis. 3, 53–64 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Dearborn-Tomazos, J. L. et al. Association of dietary patterns in midlife and cognitive function in later life in US adults without dementia. JAMA Netw. Open 2, e1916641 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Jáuregui-Lobera, I. Iron deficiency and cognitive functions. Neuropsychiatr. Dis. Treat. 10, 2087–2095 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Vinothkumar, G., Krishnakumar, S., Riya & Venkataraman, P. Correlation between abnormal GSK3β, β Amyloid, total Tau, p-Tau 181 levels and neuropsychological assessment total scores in CKD patients with cognitive dysfunction: impact of rHuEPO therapy. J. Clin. Neurosci. 69, 38–42 (2019).

    Article  CAS  PubMed  Google Scholar 

  201. Vinothkumar, G. et al. Therapeutic impact of rHuEPO on abnormal platelet APP, BACE 1, presenilin 1, ADAM 10 and Aβ expressions in chronic kidney disease patients with cognitive dysfunction like Alzheimer’s disease: a pilot study. Biomed. Pharmacother. 104, 211–222 (2018).

    Article  CAS  Google Scholar 

  202. Wallace, H. J., Wallace, I. R. & McCaffrey, P. Cognitive decline reversed by cinacalcet. QJM 108, 59–61 (2015).

    Article  CAS  PubMed  Google Scholar 

  203. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  204. Tardif, J.-C. et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N. Engl. J. Med. 381, 2497–2505 (2019).

    Article  CAS  PubMed  Google Scholar 

  205. Liberale, L. et al. Post-ischaemic administration of the murine canakinumab-surrogate antibody improves outcome in experimental stroke. Eur. Heart J. 39, 3511–3517 (2018).

    Article  CAS  PubMed  Google Scholar 

  206. Sil, S., Ghosh, R., Sanyal, M., Guha, D. & Ghosh, T. A comparison of neurodegeneration linked with neuroinflammation in different brain areas of rats after intracerebroventricular colchicine injection. J. Immunotoxicol. 13, 181–190 (2016).

    Article  CAS  PubMed  Google Scholar 

  207. Rahman, M. R. et al. Identification of molecular signatures and pathways to identify novel therapeutic targets in Alzheimer’s disease: insights from a systems biomedicine perspective. Genomics 112, 1290–1299 (2020).

    Article  CAS  PubMed  Google Scholar 

  208. Huang, L. K., Chao, S. P. & Hu, C. J. Clinical trials of new drugs for Alzheimer disease. J. Biomed. Sci. 27, 18 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Yiannopoulou, K. G., Anastasiou, A. I., Kyrozis, A. & Anastasiou, I. P. Donepezil treatment for Alzheimer’s disease in chronic dialysis patients. Case Rep. Nephrol. Dial. 9, 126–136 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Paez, A. AMBAR (Alzheimer’s management by albumin replacement) phase IIB/III results. J. Prev. Alzheimers Dis. https://www.ctad-alzheimer.com/files/files/CTAD%20OA.pdf (2018).

  211. Cassano, T. et al. Early intrathecal infusion of everolimus restores cognitive function and mood in a murine model of Alzheimer’s disease. Exp. Neurol. 311, 88–105 (2019).

    Article  CAS  PubMed  Google Scholar 

  212. Watson, C. P. et al. The transporter and permeability interactions of asymmetric dimethylarginine (ADMA) and L-arginine with the human blood–brain barrier in vitro. Brain Res. 1648, 232–242 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Badran, M., Golbidi, S., Ayas, N. & Laher, I. Nitric oxide bioavailability in obstructive sleep apnea: interplay of asymmetric dimethylarginine and free radicals. Sleep Disord. 2015, 387801 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Obayashi, K. et al. Association of serum asymmetric dimethylarginine with muscle strength and gait speed: a cross-sectional study of the HEIJO-KYO cohort. J. Bone Miner. Res. 31, 1107–1113 (2016).

    Article  CAS  PubMed  Google Scholar 

  215. Luce, M. et al. Is 3-Carboxy-4-methyl-5-propyl-2-furanpropionate (CMPF) a clinically relevant uremic toxin in haemodialysis patients? Toxins 10, E205 (2018).

    Article  PubMed  CAS  Google Scholar 

  216. Gordon-Dseagu, V. L. Z. et al. The association of sleep with metabolic pathways and metabolites: evidence from the Dietary Approaches to Stop Hypertension (DASH)-sodium feeding study. Metabolomics 15, 48 (2019).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  217. Leifheit-Nestler, M. & Haffner, D. Paracrine effects of FGF23 on the heart. Front. Endocrinol. 9, 278 (2018).

    Article  Google Scholar 

  218. Huang, M. et al. The uremic toxin hippurate promotes endothelial dysfunction via the activation of Drp1-mediated mitochondrial fission. Redox Biol. 16, 303–313 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Ferrari, C. C. et al. Progressive neurodegeneration and motor disabilities induced by chronic expression of IL-1beta in the substantia nigra. Neurobiol. Dis. 24, 183–193 (2006).

    Article  CAS  PubMed  Google Scholar 

  220. Matsumoto, J. et al. TNF-α-sensitive brain pericytes activate microglia by releasing IL-6 through cooperation between IκB-NFκB and JAK-STAT3 pathways. Brain Res. 1692, 34–44 (2018).

    Article  CAS  PubMed  Google Scholar 

  221. Pu, T. et al. Persistent malfunction of glymphatic and meningeal lymphatic drainage in a mouse model of subarachnoid hemorrhage. Exp. Neurobiol. 28, 104–118 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Furukawa, S., Usuda, K., Abe, M., Hayashi, S. & Ogawa, I. Indole-3-acetic acid induces microencephaly in mouse fetuses. Exp. Toxicol. Pathol. 59, 43–52 (2007).

    Article  CAS  PubMed  Google Scholar 

  223. Adesso, S. et al. Indoxyl sulfate affects glial function increasing oxidative stress and neuroinflammation in chronic kidney disease: interaction between astrocytes and microglia. Front. Pharmacol. 8, 370 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Yeh, Y.-C. et al. Indoxyl sulfate, not p-cresyl sulfate, is associated with cognitive impairment in early-stage chronic kidney disease. Neurotoxicology 53, 148–152 (2016).

    Article  CAS  PubMed  Google Scholar 

  225. Fujita, Y. & Yamashita, T. The effects of leptin on glial cells in neurological diseases. Front. Neurosci. 13, 828 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Segura, S. et al. Leptin-dependent neurotoxicity via induction of apoptosis in adult rat neurogenic cells. Front. Cell. Neurosci. 9, 350 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. Chun, H. J., Lee, Y., Kim, A. H. & Lee, J. Methylglyoxal causes cell death in neural progenitor cells and impairs adult hippocampal neurogenesis. Neurotox. Res. 29, 419–431 (2016).

    Article  CAS  PubMed  Google Scholar 

  228. Haddad, M. et al. Methylglyoxal and glyoxal as potential peripheral markers for MCI diagnosis and their effects on the expression of neurotrophic, inflammatory and neurodegenerative factors in neurons and in neuronal derived-extracellular vesicles. Int. J. Mol. Sci. 20, E4906 (2019).

    Article  PubMed  CAS  Google Scholar 

  229. Bird, M.-L., El Haber, N., Batchelor, F., Hill, K. & Wark, J. D. Vitamin D and parathyroid hormone are associated with gait instability and poor balance performance in mid-age to older aged women. Gait Posture 59, 71–75 (2018).

    Article  PubMed  Google Scholar 

  230. Rizwan Siddiqui, M. et al. Erythropoietin-mediated activation of aquaporin-4 channel for the treatment of experimental hydrocephalus. Childs Nerv. Syst. 34, 2195–2202 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Liu, D. et al. Hydrogen sulfide promotes proliferation and neuronal differentiation of neural stem cells and protects hypoxia-induced decrease in hippocampal neurogenesis. Pharmacol. Biochem. Behav. 116, 55–63 (2014).

    Article  CAS  PubMed  Google Scholar 

  232. Nath, N., Prasad, H. K. & Kumar, M. Cerebroprotective effects of hydrogen sulfide in homocysteine-induced neurovascular permeability: involvement of oxidative stress, arginase, and matrix metalloproteinase-9. J. Cell. Physiol. 234, 3007–3019 (2019).

    Article  CAS  PubMed  Google Scholar 

  233. Huang, T.-T., Hao, D.-L., Wu, B.-N., Mao, L.-L. & Zhang, J. Uric acid demonstrates neuroprotective effect on Parkinson’s disease mice through Nrf2-ARE signaling pathway. Biochem. Biophys. Res. Commun. 493, 1443–1449 (2017).

    Article  CAS  PubMed  Google Scholar 

  234. Yang, N., Xu, L., Lin, P. & Cui, J. Uric acid promotes neuronal differentiation of human placenta-derived mesenchymal stem cells in a time- and concentration-dependent manner. Neural Regen. Res. 7, 756–760 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Yang, S., Zhang, X., Yuan, J., Yin, J. & Hu, W. Serum uric acid is independently associated with enlarged perivascular spaces. Sci. Rep. 7, 16435 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  236. Moretti, R., Morelli, M. E. & Caruso, P. Vitamin D in neurological diseases: a rationale for a pathogenic impact. Int. J. Mol. Sci. 19, E2245 (2018).

    Article  PubMed  CAS  Google Scholar 

  237. Morello, M. et al. Vitamin D improves neurogenesis and cognition in a mouse model of Alzheimer’s disease. Mol. Neurobiol. 55, 6463–6479 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Beauchet, O. et al. Effects of Vitamin D and calcium fortified yogurts on gait, cognitive performances, and serum 25-hydroxyvitamin D concentrations in older community-dwelling females: results from the GAit, MEmory, Dietary and Vitamin D (GAME-D2) randomized controlled trial. Nutrients 11, E2880 (2019).

    Article  PubMed  Google Scholar 

  239. Hooper, S. R. et al. Neurocognitive, social-behavioral, and adaptive functioning in preschool children with mild to moderate kidney disease. J. Dev. Behav. Pediatr. 37, 231–238 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Hooper, S. R. et al. Neurocognitive functioning of children and adolescents with mild-to-moderate chronic kidney disease. Clin. J. Am. Soc. Nephrol. 6, 1824–1830 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Kendrick, J. et al. Acute kidney injury is associated with an increased risk of dementia. Kidney Int. Rep. 4, 1491–1493 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Alcocer-Castillejos, N., Jiménez-González, A. & Hinojosa-Azaola, A. No difference in cognitive dysfunction among patients with ANCA-associated vasculitis, rheumatoid arthritis or chronic kidney disease. J. Int. Neuropsychol. Soc. 25, 595–602 (2019).

    Article  PubMed  Google Scholar 

  243. Petersen, R. C. et al. Practice guideline update summary: mild cognitive impairment: report of the guideline development, dissemination, and implementation subcommittee of the American Academy of Neurology. Neurology 90, 126–135 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Weng, S.-C. et al. Progression of cognitive dysfunction in elderly chronic kidney disease patients in a veteran’s institution in central Taiwan: a 3-year longitudinal study. Intern. Med. 51, 29–35 (2012).

    Article  CAS  PubMed  Google Scholar 

  245. Murray, A. M. et al. Cognitive impairment in hemodialysis patients is common. Neurology 67, 216–223 (2006).

    Article  CAS  PubMed  Google Scholar 

  246. Kurella, M., Mapes, D. L., Port, F. K. & Chertow, G. M. Correlates and outcomes of dementia among dialysis patients: the dialysis outcomes and practice patterns study. Nephrol. Dial. Transpl. 21, 2543–2548 (2006).

    Article  Google Scholar 

  247. Petersen, R. C. et al. Mild cognitive impairment: clinical characterization and outcome. Arch. Neurol. 56, 303–308 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors’ work was supported by the Swiss National Science Foundation (C.A.W.) and VALERE Programme by the University of Campania Luigi Vanvitelli (G.C.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Giovambattista Capasso.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Nephrology thanks S. Ferreira, N. Vaziri and D. Wolfgram for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Allen Brain Atlas database: https://human.brain-map.org/

ARCHS4 database: https://amp.pharm.mssm.edu/archs4/index.html

EUTOX: http://www.uremic-toxins.org/DataBase.html

Human Protein Atlas database: https://www.proteinatlas.org/

WikiPathways database: https://www.wikipathways.org/index.php/WikiPathways

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viggiano, D., Wagner, C.A., Martino, G. et al. Mechanisms of cognitive dysfunction in CKD. Nat Rev Nephrol 16, 452–469 (2020). https://doi.org/10.1038/s41581-020-0266-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-020-0266-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing