[go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Design and reporting of prebiotic and probiotic clinical trials in the context of diet and the gut microbiome

Abstract

Diet is a major determinant of the gastrointestinal microbiome composition and function, yet our understanding of how it impacts the efficacy of prebiotics and probiotics is limited. Here we examine current evidence of dietary influence on prebiotic and probiotic efficacy in human studies, including potential mechanisms. We propose that habitual diet be included as a variable in prebiotic and probiotic intervention studies. This recommendation is based on the potential mechanisms via which diet can affect study outcomes, either directly or through the gut microbiome. We consider the challenges and opportunities of dietary assessment in this context. Lastly, we provide recommendations for the design, conduct and reporting of human clinical trials of prebiotics and probiotics (and other biotic interventions) to account for any effect of diet and nutrition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Continuum of strategies to manage the influence of habitual diet on the microbiome in clinical trials of prebiotics and probiotics.

Similar content being viewed by others

References

  1. Gill, S. K., Rossi, M., Bajka, B. & Whelan, K. Dietary fibre in gastrointestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 18, 101–116 (2021).

    Article  PubMed  CAS  Google Scholar 

  2. Gunn, D. et al. Contrasting effects of viscous and particulate fibers on colonic fermentation in vitro and in vivo, and their impact on intestinal water studied by MRI in a randomized trial. Am. J. Clin. Nutr. 112, 595–602 (2020).

    Article  PubMed  Google Scholar 

  3. Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).

    Article  PubMed  CAS  Google Scholar 

  4. Singh, R. K. et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 15, 73 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gougoulias, C. et al. Changes in the intestinal microbiota after a short period of dietary over-indulgence, representative of a holiday or festival season. Food Sci. Technol. Bull. Funct. Foods 5, 51–59 (2009).

    Article  Google Scholar 

  6. Kampmann, C., Dicksved, J., Engstrand, L. & Rautelin, H. Changes to human faecal microbiota after international travel. Travel Med. Infect. Dis. 44, 102199 (2021).

    Article  PubMed  Google Scholar 

  7. Sonnenburg, E. D. & Sonnenburg, J. L. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 20, 779–786 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Holmes, A. J. et al. Diet–microbiome interactions in health are controlled by intestinal nitrogen source constraints. Cell Metab. 25, 140–151 (2017).

    Article  PubMed  CAS  Google Scholar 

  9. Rodionov, D. A. et al. Micronutrient requirements and sharing capabilities of the human gut microbiome. Front. Microbiol. 10, 1316 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Leeming, E. R., Johnson, A. J., Spector, T. D. & Le Roy, C. I. Effect of diet on the gut microbiota: rethinking intervention duration. Nutrients 11, 2862 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Johnson, A. J. et al. Daily sampling reveals personalizedd diet–microbiome associations in humans. Cell Host Microbe 25, 789–802.e5 (2019).

    Article  PubMed  CAS  Google Scholar 

  12. Gehrig, J. L. et al. Effects of microbiota-directed foods in gnotobiotic animals and undernourished children. Science 365, eaau4732 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gibson, G. R. et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14, 491–502 (2017).

    Article  PubMed  Google Scholar 

  14. Wilson, B. & Whelan, K. Prebiotic inulin-type fructans and galacto-oligosaccharides: definition, specificity, function, and application in gastrointestinal disorders. J. Gastroenterol. Hepatol. 32, 64–68 (2017).

    Article  PubMed  CAS  Google Scholar 

  15. So, D. et al. Dietary fiber intervention on gut microbiota composition in healthy adults: a systematic review and meta-analysis. Am. J. Clin. Nutr. 107, 965–983 (2018).

    Article  PubMed  Google Scholar 

  16. Gibson, G. R., Beatty, E. R., Wang, X. & Cummings, J. H. Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108, 975–982 (1995).

    Article  PubMed  CAS  Google Scholar 

  17. Ramirez-Farias, C. et al. Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br. J. Nutr. 101, 541–550 (2009).

    Article  PubMed  CAS  Google Scholar 

  18. Jackson, P. P. et al. Inulin-type fructans and 2′fucosyllactose alter both microbial composition and appear to alleviate stress-induced mood state in a working population compared to placebo (maltodextrin): the EFFICAD Trial, a randomized, controlled trial. Am. J. Clin. Nutr. 118, 938–955 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dou, Y. et al. Effect of fructooligosaccharides supplementation on the gut microbiota in human: a systematic review and meta-analysis. Nutrients 14, 3298 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Boets, E. et al. Quantification of in vivo colonic short chain fatty acid production from inulin. Nutrients 7, 8916–8929 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Hill, C. et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11, 506–514 (2014).

    Article  PubMed  Google Scholar 

  22. Sanders, M. E., Merenstein, D. J., Reid, G., Gibson, G. R. & Rastall, R. A. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 16, 605–616 (2019).

    Article  PubMed  Google Scholar 

  23. Kristensen, N. B. et al. Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials. Genome Med. 8, 52 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liang, D., Wu, F., Zhou, D., Tan, B. & Chen, T. Commercial probiotic products in public health: current status and potential limitations. Crit. Rev. Food Sci. Nutr. 64, 6455–6476 (2024).

    Article  PubMed  Google Scholar 

  25. Marco, M. L. et al. A classification system for defining and estimating dietary intake of live microbes in US adults and children. J. Nutr. 152, 1729–1736 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Guarner F. et al. World Gastroenterology Organisation Global Guidelines: Probiotics and Prebiotics (World Gastroenterology Organisation, 2023).

  27. McFarland, L. V., Evans, C. T. & Goldstein, E. J. C. Strain-specificity and disease-specificity of probiotic efficacy: a systematic review and meta-analysis. Front. Med. 5, 124 (2018).

    Article  Google Scholar 

  28. Wilson, B., Rossi, M., Dimidi, E. & Whelan, K. Prebiotics in irritable bowel syndrome and other functional bowel disorders in adults: a systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 109, 1098–1111 (2019).

    Article  PubMed  Google Scholar 

  29. Teo, Y. Q. J. et al. Effects of probiotics, prebiotics and synbiotics on anthropometric, cardiometabolic and inflammatory markers: an umbrella review of meta-analyses. Clin. Nutr. 43, 1563–1583 (2024).

    Article  PubMed  CAS  Google Scholar 

  30. Holscher, H. D. et al. Agave inulin supplementation affects the fecal microbiota of healthy adults participating in a randomized, double-blind, placebo-controlled, crossover trial. J. Nutr. 145, 2025–2032 (2015).

    Article  PubMed  CAS  Google Scholar 

  31. Healey, G. et al. Habitual dietary fibre intake influences gut microbiota response to an inulin-type fructan prebiotic: a randomised, double-blind, placebo-controlled, cross-over, human intervention study. Br. J. Nutr. 119, 176–189 (2018).

    Article  PubMed  CAS  Google Scholar 

  32. Healey, G. et al. Validity and reproducibility of a habitual dietary fibre intake short food frequency questionnaire. Nutrients 8, 558 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Holmes, Z. C. et al. Microbiota responses to different prebiotics are conserved within individuals and associated with habitual fiber intake. Microbiome 10, 114 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Eid, N. et al. Impact of palm date consumption on microbiota growth and large intestinal health: a randomised, controlled, cross-over, human intervention study. Br. J. Nutr. 114, 1226–1236 (2015).

    Article  PubMed  CAS  Google Scholar 

  35. Shin, J. H. et al. Effect of Saengshik supplementation on the gut microbial composition of healthy Korean adults: a single-group pilot study. Front. Nutr. 8, 743620 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bergeron, N. et al. Diets high in resistant starch increase plasma levels of trimethylamine-N-oxide, a gut microbiome metabolite associated with CVD risk. Br. J. Nutr. 116, 2020–2029 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Maier, T. V. et al. Impact of dietary resistant starch on the human gut microbiome, metaproteome, and metabolome. mBio 8, e01343-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Salonen, A. et al. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J. 8, 2218–2230 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Tap, J. et al. Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Environ. Microbiol. 17, 4954–4964 (2015).

    Article  PubMed  CAS  Google Scholar 

  40. Wastyk, H. C. et al. Randomized controlled trial demonstrates response to a probiotic intervention for metabolic syndrome that may correspond to diet. Gut Microbes 15, 2178794 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hasain, Z. et al. Diet and pre-intervention washout modifies the effects of probiotics on gestational diabetes mellitus: a comprehensive systematic review and meta-analysis of randomized controlled trials. Nutrients 13, 3045 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Swanson, K. S. et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat. Rev. Gastroenterol. Hepatol. 17, 687–701 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhang, X. F. et al. Clinical effects and gut microbiota changes of using probiotics, prebiotics or synbiotics in inflammatory bowel disease: a systematic review and meta-analysis. Eur. J. Nutr. 60, 2855–2875 (2021).

    Article  PubMed  Google Scholar 

  44. Krumbeck, J. A. et al. Probiotic Bifidobacterium strains and galactooligosaccharides improve intestinal barrier function in obese adults but show no synergism when used together as synbiotics. Microbiome 6, 121 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. De Giani, A. et al. Effects of inulin-based prebiotics alone or in combination with probiotics on human gut microbiota and markers of immune system: a randomized, double-blind, placebo-controlled study in healthy subjects. Microorganisms 10, 1256 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wang, J., Zhang, J., Liu, W., Zhang, H. & Sun, Z. Metagenomic and metatranscriptomic profiling of Lactobacillus casei Zhang in the human gut. NPJ Biofilms Microbiomes 7, 55 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Marco, M. L. et al. Convergence in probiotic Lactobacillus gut-adaptive responses in humans and mice. ISME J. 4, 1481–1484 (2010).

    Article  PubMed  CAS  Google Scholar 

  48. Marco, M. L. et al. Lifestyle of Lactobacillus plantarum in the mouse caecum. Environ. Microbiol. 11, 2747–2757 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Goh, Y. J., Barrangou, R. & Klaenhammer, T. R. In vivo transcriptome of Lactobacillus acidophilus and colonization impact on murine host intestinal gene expression. mBio 12, e03399-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tachon, S., Lee, B. & Marco, M. L. Diet alters probiotic Lactobacillus persistence and function in the intestine. Environ. Microbiol. 16, 2915–2926 (2014).

    Article  PubMed  CAS  Google Scholar 

  51. Maldonado-Gómez, M. X. et al. Stable engraftment of Bifidobacterium longum AH1206 in the human gut depends on individualized features of the resident microbiome. Cell Host Microbe 20, 515–526 (2016).

    Article  PubMed  Google Scholar 

  52. O’Brien, C. E. et al. Early probiotic supplementation with B. infantis in breastfed infants leads to persistent colonization at 1 year. Pediatr. Res. 91, 627–636 (2022).

    Article  PubMed  Google Scholar 

  53. Yin, X., Lee, B., Zaragoza, J. & Marco, M. L. Dietary perturbations alter the ecological significance of ingested Lactobacillus plantarum in the digestive tract. Sci. Rep. 7, 7267 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Whitton, C. et al. A systematic review examining contributors to misestimation of food and beverage intake based on short-term self-report dietary assessment instruments administered to adults. Adv. Nutr. 13, 2620–2665 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Macdiarmid, J. & Blundell, J. Assessing dietary intake: who, what and why of under-reporting. Nutr. Res. Rev. 11, 231–253 (1998).

    Article  PubMed  CAS  Google Scholar 

  56. Ovaskainen, M. L. et al. Accuracy in the estimation of food servings against the portions in food photographs. Eur. J. Clin. Nutr. 62, 674–681 (2008).

    Article  PubMed  Google Scholar 

  57. Hebert, J. R. et al. Gender differences in social desirability and social approval bias in dietary self-report. Am. J. Epidemiol. 146, 1046–1055 (1997).

    Article  PubMed  CAS  Google Scholar 

  58. Armet, A. M. et al. Rethinking healthy eating in light of the gut microbiome. Cell Host Microbe 30, 764–785 (2022).

    Article  PubMed  CAS  Google Scholar 

  59. Cotillard, A. et al. A posteriori dietary patterns better explain variations of the gut microbiome than individual markers in the American Gut Project. Am. J. Clin. Nutr. 115, 432–443 (2022).

    Article  PubMed  Google Scholar 

  60. Power, S. E., O’Toole, P. W., Stanton, C., Ross, R. P. & Fitzgerald, G. F. Intestinal microbiota, diet and health. Br. J. Nutr. 111, 387–402 (2014).

    Article  PubMed  CAS  Google Scholar 

  61. Whelan, K., Bancil, A. S., Lindsay, J. O. & Chassaing, B. Ultra-processed foods and food additives in gut health and disease. Nat. Rev. Gastroenterol. Hepatol. 21, 406–427 (2024).

    Article  PubMed  Google Scholar 

  62. Bingham, S. A. The dietary assessment of individuals: methods, accuracy, new techniques and recommendations. Nutr. Abstr. Rev. 57, 705–742 (1987).

    Google Scholar 

  63. Bingham, S. A. et al. Validation of weighed records and other methods of dietary assessment using the 24 h urine nitrogen technique and other biological markers. Br. J. Nutr. 73, 531–550 (1995).

    Article  PubMed  CAS  Google Scholar 

  64. Brussaard, J. H. et al. A European food consumption survey method—conclusions and recommendations. Eur. J. Clin. Nutr. 56, S89–S94 (2002).

    Article  PubMed  Google Scholar 

  65. Stote, K. S., Radecki, S. V., Moshfegh, A. J., Ingwersen, L. A. & Baer, D. J. The number of 24 h dietary recalls using the US Department of Agriculture’s automated multiple-pass method required to estimate nutrient intake in overweight and obese adults. Public Health Nutr. 14, 1736–1742 (2011).

    Article  PubMed  Google Scholar 

  66. Petrone, B. L. et al. Diversity of plant DNA in stool is linked to dietary quality, age, and household income. Proc. Natl Acad. Sci. USA 120, e2304441120 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Collins, C., McNamara, A. E. & Brennan, L. Role of metabolomics in identification of biomarkers related to food intake. Proc. Nutr. Soc. 78, 189–196 (2019).

    Article  PubMed  CAS  Google Scholar 

  68. Schulz, K. F., Altman, D. G. & Moher, D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. Br. Med. J. 340, c332 (2010).

    Article  Google Scholar 

  69. Shane, A. L. et al. Guide to designing, conducting, publishing and communicating results of clinical studies involving probiotic applications in human participants. Gut Microbes 1, 243–253 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Shanahan, E. R., McMaster, J. J. & Staudacher, H. M. Conducting research on diet–microbiome interactions: a review of current challenges, essential methodological principles, and recommendations for best practice in study design. J. Hum. Nutr. Diet. 34, 631–644 (2021).

    Article  PubMed  Google Scholar 

  71. Kaczmarek, J. L., Musaad, S. M. & Holscher, H. D. Time of day and eating behaviors are associated with the composition and function of the human gastrointestinal microbiota. Am. J. Clin. Nutr. 106, 1220–1231 (2017).

    Article  PubMed  CAS  Google Scholar 

  72. Maifeld, A. et al. Fasting alters the gut microbiome reducing blood pressure and body weight in metabolic syndrome patients. Nat. Commun. 12, 1970 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Xiao, C. et al. Associations of dietary diversity with the gut microbiome, fecal metabolites, and host metabolism: results from 2 prospective Chinese cohorts. Am. J. Clin. Nutr. 116, 1049–1058 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Su, J. et al. Remodeling of the gut microbiome during Ramadan-associated intermittent fasting. Am. J. Clin. Nutr. 113, 1332–1342 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Sanders, M. E. et al. Effects of genetic, processing, or product formulation changes on efficacy and safety of probiotics. Ann. NY Acad. Sci. 1309, 1–18 (2014).

    Article  PubMed  CAS  Google Scholar 

  76. Marteau, P. & Shanahan, F. Basic aspects and pharmacology of probiotics: an overview of pharmacokinetics, mechanisms of action and side-effects. Best Pr. Res. Clin. Gastroenterol. 17, 725–740 (2003).

    Article  CAS  Google Scholar 

  77. Segers, A. & Depoortere, I. Circadian clocks in the digestive system. Nat. Rev. Gastroenterol. Hepatol. 18, 239–251 (2021).

    Article  PubMed  Google Scholar 

  78. Hume, M. P., Nicolucci, A. C. & Reimer, R. A. Prebiotic supplementation improves appetite control in children with overweight and obesity: a randomized controlled trial. Am. J. Clin. Nutr. 105, 790–799 (2017).

    Article  PubMed  CAS  Google Scholar 

  79. Suez, J. et al. Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cell 185, 3307–3328.e19 (2022).

    Article  PubMed  CAS  Google Scholar 

  80. Chassaing, B. et al. Randomized controlled-feeding study of dietary emulsifier carboxymethylcellulose reveals detrimental impacts on the gut microbiota and metabolome. Gastroenterology 162, 743–756 (2022).

    Article  PubMed  CAS  Google Scholar 

  81. Dunn, S. et al. Validation of a food frequency questionnaire to measure intakes of inulin and oligofructose. Eur. J. Clin. Nutr. 65, 402–408 (2011).

    Article  PubMed  CAS  Google Scholar 

  82. Turpin, W. et al. Mediterranean-like dietary pattern associations with gut microbiome composition and subclinical gastrointestinal inflammation. Gastroenterology 163, 685–698 (2022).

    Article  PubMed  CAS  Google Scholar 

  83. Terpou, A. et al. Probiotics in food systems: significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients 11, 1591 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Jackson, P. P. J., Wijeyesekera, A., Theis, S., van Harsselaar, J. & Rastall, R. A. Food for thought! Inulin-type fructans: does the food matrix matter? J. Funct. Foods 90, 104987 (2022).

    Article  CAS  Google Scholar 

  85. Jackson, P. P. J., Wijeyesekera, A., Theis, S., Van Harsselaar, J. & Rastall, R. A. Effects of food matrix on the prebiotic efficacy of inulin-type fructans: a randomised trial. Benef. Microbes 14, 317–334 (2023).

    Article  PubMed  CAS  Google Scholar 

  86. Min, M., Bunt, C. R., Mason, S. L. & Hussain, M. A. Non-dairy probiotic food products: an emerging group of functional foods. Crit. Rev. Food Sci. Nutr. 59, 2626–2641 (2019).

    Article  PubMed  CAS  Google Scholar 

  87. Cunningham, M. et al. Applying probiotics and prebiotics in new delivery formats—is the clinical evidence transferable? Trends Food Sci. Technol. 112, 495–506 (2021).

    Article  CAS  Google Scholar 

  88. Sanders, M. E. & Marco, M. L. Food formats for effective delivery of probiotics. Annu. Rev. Food Sci. Technol. 1, 65–85 (2010).

    Article  PubMed  Google Scholar 

  89. Gomand, F. et al. Food matrix design for effective lactic acid bacteria delivery. Annu. Rev. Food Sci. Technol. 10, 285–310 (2019).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This paper is based in part on an expert panel workshop undertaken at the ISAPP Annual Meeting in Sitges, Spain in June 2022. The manuscript was written by invited speakers who presented in that workshop. We thank all of the participants in this workshop for their contribution to the discussion, as well as ISAPP for providing the forum for collaboration and discussion.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design of the manuscript, wrote individual sections of the manuscript, critically commented on preliminary drafts and approved the final version before submission. K.W. and M.L.M. led the synthesis of sections and revisions.

Corresponding authors

Correspondence to Kevin Whelan or Maria L. Marco.

Ethics declarations

Competing interests

K.W. has received research grants from commercial funders, including the Almond Board of California, Danone and International Nut and Dried Fruit Council, has received speaker fees from Yakult UK and Danone and is the holder of a joint patent to use volatile organic compounds in the diagnosis and dietary management of irritable bowel syndrome (Biomarkers for irritable bowel syndrome, PCT/GB2020/051604). C.G. has received research grants from commercial funders, including Nestlé, Arla Food Ingredients, the French Dairy Interbranch Organization and the International Fine Particle Research Institute, and benefited from the support of the project GEL ANR-18-CE21-0003 of the French National Research Agency. H.M.S. has served as a speaker for the Rome Foundation, Dietitian Connection and Microba, and was a consultant for DSM Pharmaceuticals. S.T. is an employee of Südzucker/BENEO Group. M.L.M. is on the NURA scientific advisory board, ISAPP Board of Directors and Institute for the Advancement of Food and Nutrition Sciences subcommittee on live microorganisms. The other authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whelan, K., Alexander, M., Gaiani, C. et al. Design and reporting of prebiotic and probiotic clinical trials in the context of diet and the gut microbiome. Nat Microbiol 9, 2785–2794 (2024). https://doi.org/10.1038/s41564-024-01831-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-024-01831-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing