[go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spaceflight and simulated microgravity suppresses macrophage development via altered RAS/ERK/NFκB and metabolic pathways

Abstract

Spaceflight-associated immune system weakening ultimately limits the ability of humans to expand their presence beyond the earth's orbit. A mechanistic study of microgravity-regulated immune cell function is necessary to overcome this challenge. Here, we demonstrate that both spaceflight (real) and simulated microgravity significantly reduce macrophage differentiation, decrease macrophage quantity and functional polarization, and lead to metabolic reprogramming, as demonstrated by changes in gene expression profiles. Moreover, we identified RAS/ERK/NFκB as a major microgravity-regulated pathway. Exogenous ERK and NFκB activators significantly counteracted the effect of microgravity on macrophage differentiation. In addition, microgravity also affects the p53 pathway, which we verified by RT-qPCR and Western blot. Collectively, our data reveal a new mechanism for the effects of microgravity on macrophage development and provide potential molecular targets for the prevention or treatment of macrophage differentiation deficiency in spaceflight.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microgravity decreases the total number of cells and inhibits the differentiation of macrophages from HPCs.
Fig. 2: M1/M2 macrophage polarization is impaired after in vitro differentiation in a simulated microgravity environment.
Fig. 3: Microgravity-altered genes involved in key biological processes.
Fig. 4: Metabolic changes in response to microgravity.
Fig. 5: The major macrophage differentiation signaling pathways impacted by microgravity.
Fig. 6: Activation of RAS/ERK/NFκB signaling pathways rescues the effects of microgravity.
Fig. 7: Microgravity activates the p53 signaling pathway.

Similar content being viewed by others

Data availability

The raw RNA-Seq data from this study were deposited into the BIGD Genome Sequence Archive (GSA) under accession number CRA000920.

References

  1. Grigor'ev, A. I. Physiological problems of manned mission to Mars. Ross. Fiziol. Zh . Im. I M Sechenova. 93, 473–484 (2007).

    CAS  PubMed  Google Scholar 

  2. Wichman, H. A. Behavioral and health implications of civilian spaceflight. Aviat. Space Environ. Med. 76(6 Suppl), B164–B171 (2005).

    PubMed  Google Scholar 

  3. Davis, T. A. et al. Effect of spaceflight on human stem cell hematopoiesis: suppression of erythropoiesis and myelopoiesis. J. Leukoc. Biol. 60, 69–76 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Blaber, E., Marcal, H. & Burns, B. P. Bioastronautics: the influence of microgravity on astronaut health. Astrobiology 10, 463–473 (2010).

    Article  PubMed  Google Scholar 

  5. Hughes-Fulford, M., Chang, T. T., Martinez, E. M. & Li, C. F. Spaceflight alters expression of microRNA during T-cell activation. FASEB J. 29, 4893–4900 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kraemer, W. J. et al. Responses of plasma proenkephalin peptide F in rats following 14 days of spaceflight. Aviat. Space Environ. Med. 75, 114–117 (2004).

    CAS  PubMed  Google Scholar 

  7. Hwang, S. A., Crucian, B., Sams, C. & Actor, J. K. Post-spaceflight (STS-135) mouse splenocytes demonstrate altered activation properties and surface molecule expression. PLoS ONE 10, e0124380 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Paulsen, K. et al. Regulation of ICAM-1 in cells of the monocyte/macrophage system in microgravity. Biomed. Res Int. 2015, 538786 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Taylor, G. R., Konstantinova, I., Sonnenfeld, G. & Jennings, R. Changes in the immune system during and after spaceflight. Adv. Space Biol. Med. 6, 1–32 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Tauber, S. et al. Cytoskeletal stability and metabolic alterations in primary human macrophages in long-term microgravity. PLoS ONE 12, e0175599 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Stowe, R. P., Sams, C. F. & Pierson, D. L. Adrenocortical and immune responses following short- and long-duration spaceflight. Aviat. Space Environ. Med. 82, 627–634 (2011).

    Article  PubMed  Google Scholar 

  12. Crucian, B. E., Stowe, R. P., Pierson, D. L. & Sams, C. F. Immune system dysregulation following short- vs long-duration spaceflight. Aviat. Space Environ. Med. 79, 835–843 (2008).

    Article  PubMed  Google Scholar 

  13. Girardi, C. et al. Integration analysis of microRNA and mRNA expression profiles in human peripheral blood lymphocytes cultured in modeled microgravity. Biomed. Res Int. 2014, 296747 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tauber, S. et al. Signal transduction in primary human T lymphocytes in altered gravity during parabolic flight and clinostat experiments. Cell Physiol. Biochem. 35, 1034–1051 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Baqai, F. P. et al. Effects of spaceflight on innate immune function and antioxidant gene expression. J. Appl Physiol. 106, 1935–1942 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Crucian, B., Stowe, R., Quiriarte, H., Pierson, D. & Sams, C. Monocyte phenotype and cytokine production profiles are dysregulated by short-duration spaceflight. Aviat. Space Environ. Med. 82, 857–862 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Hsieh, C. L., Chao, P. D. & Fang, S. H. Morin sulphates/glucuronides enhance macrophage function in microgravity culture system. Eur. J. Clin. Invest. 35, 591–596 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, C. et al. Microgravity inhibition of lipopolysaccharide-induced tumor necrosis factor-alpha expression in macrophage cells. Inflamm. Res. 63, 91–98 (2014).

    Article  PubMed  CAS  Google Scholar 

  19. Armstrong, J. W., Gerren, R. A. & Chapes, S. K. The effect of space and parabolic flight on macrophage hematopoiesis and function. Exp. Cell Res. 216, 160–168 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Ullrich, O., Huber, K. & Lang, K. Signal transduction in cells of the immune system in microgravity. Cell Commun. Signal. 6, 9 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Wang, C. et al. Microgravity activates p38 MAPK-C/EBPbeta pathway to regulate the expression of arginase and inflammatory cytokines in macrophages. Inflamm. Res. 64, 303–311 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Zhu, L., Zhao, Q., Yang, T., Ding, W. & Zhao, Y. Cellular metabolism and macrophage functional polarization. Int. Rev. Immunol. 34, 82–100 (2015).

    Article  PubMed  CAS  Google Scholar 

  23. Murray, P. J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Martinez, F. O., Sica, A., Mantovani, A. & Locati, M. Macrophage activation and polarization. Front. Biosci. 13, 453–461 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Hou, Y. et al. IL-23-induced macrophage polarization and its pathological roles in mice with imiquimod-induced psoriasis. Protein Cell 9, 1027–1038 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhu, L. et al. TSC1 controls macrophage polarization to prevent inflammatory disease. Nat. Commun. 5, 4696 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Krausgruber, T. et al. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat. Immunol. 12, 231–238 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Gundra, U. M. et al. Alternatively activated macrophages derived from monocytes and tissue macrophages are phenotypically and functionally distinct. Blood 123, e110–e122 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tanabe, M. & Kanehisa, M. Using the KEGG database resource. Curr. Protoc. Bioinformatics 38, 1.12.1–1.43 (2012).

    Google Scholar 

  30. Sabapathy, K. & Lane, D. P. Therapeutic targeting of p53: all mutants are equal, but some mutants are more equal than others. Nat. Rev. Clin. Oncol. 15, 13–30 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Zhao, Y. et al. mTOR masters monocyte development in bone marrow by decreasing the inhibition of STAT5 on IRF8. Blood 131, 1587–1599 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Kornberg, M. D. et al. Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science 360, 449–453 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao, Q. et al. 2-Deoxy-d-Glucose treatment decreases anti-inflammatory M2 macrophage polarization in mice with tumor and allergic airway inflammation. Front Immunol. 8, 637 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Wang, C., Bo, L. & Deng, X. Research progress on metabolism of monocytes and macrophages in sepsis. Zhonghua Wei Zhong Bing. Ji Jiu Yi Xue. 29, 381–384 (2017).

    PubMed  Google Scholar 

  35. Kannan, Y. et al. TPL-2 regulates macrophage lipid metabolism and M2 differentiation to control TH2-mediated immunopathology. PLoS Pathog. 12, e1005783 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Mills, E. L. et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167, 457–70 e13 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ip, W. K. E., Hoshi, N., Shouval, D. S., Snapper, S. & Medzhitov, R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science 356, 513–519 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Miao, L. et al. Hydrogen sulfide mitigates myocardial infarction via promotion of mitochondrial biogenesis-dependent M2 polarization of macrophages. Antioxid. Redox Signal. 25, 268–281 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Yoshida, S. et al. Differential signaling during macropinocytosis in response to M-CSF and PMA in macrophages. Front. Physiol. 6, 8 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Avruch, J. et al. Ras activation of the Raf kinase: tyrosine kinase recruitment of the MAP kinase cascade. Recent Prog. Horm. Res. 56, 127–155 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Smith, E. M., Gregg, M., Hashemi, F., Schott, L. & Hughes, T. K. Corticotropin releasing factor (CRF) activation of NF-kappaB-directed transcription in leukocytes. Cell Mol. Neurobiol. 26, 1021–1036 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Yoshida, K. & Miki, Y. The cell death machinery governed by the p53 tumor suppressor in response to DNA damage. Cancer Sci. 101, 831–835 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Dregoesc, D., Rybak, A. P. & Rainbow, A. J. Increased expression of p53 enhances transcription-coupled repair and global genomic repair of a UVC-damaged reporter gene in human cells. DNA Repair 6, 588–601 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Herce, H. D., Deng, W., Helma, J., Leonhardt, H. & Cardoso, M. C. Visualization and targeted disruption of protein interactions in living cells. Nat. Commun. 4, 2660 (2013).

    Article  PubMed  CAS  Google Scholar 

  45. Machado, D. et al. Role of p53/NF-kappaB functional balance in respiratory syncytial virus-induced inflammation response. J. Gen. Virol. 99, 489–500 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Peeters, K. et al. Fructose-1,6-bisphosphate couples glycolytic flux to activation of Ras. Nat. Commun. 8, 922 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Griffiths, H. R., Gao, D. & Pararasa, C. Redox regulation in metabolic programming and inflammation. Redox Biol. 12, 50–57 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Baselga, J. Targeting the phosphoinositide-3 (PI3) kinase pathway in breast cancer. Oncologist 16(Suppl 1), 12–19 (2011).

    Article  PubMed  Google Scholar 

  49. Gomes, A. S., Ramos, H., Soares, J. & Saraiva, L. p53 and glucose metabolism: an orchestra to be directed in cancer therapy. Pharm. Res. 131, 75–86 (2018).

    Article  CAS  Google Scholar 

  50. Xie, M. et al. PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation. Nat. Commun. 7, 13280 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li B. Immune metabolism in health and tumor (New York, NY, Springer Berlin Heidelberg, 2017).

  52. Zhao H., Qiu J., Wang Y. System design and flight results of China SJ-10 recoverable microgravity experimental satellite. In Life Science in Space: Experiments on Board the SJ-10 Recoverable Satellite (eds. Duan E., Long M.) 9-42 (Springer, Singapore, 2019).

  53. Consolo, F. et al. Computational modeling for the optimization of a cardiogenic 3D bioprocess of encapsulated embryonic stem cells. Biomech. Model. Mechanobiol. 11, 261–277 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Hammond, T. G. & Hammond, J. M. Optimized suspension culture: the rotating-wall vessel. Am. J. Physiol. Ren. Physiol. 281, F12–F25 (2001).

    Article  CAS  Google Scholar 

  55. Marsano, A. et al. Use of hydrodynamic forces to engineer cartilaginous tissues resembling the non-uniform structure and function of meniscus. Biomaterials 27, 5927–5934 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Murphy, J., Summer, R., Wilson, A. A., Kotton, D. N. & Fine, A. The prolonged life-span of alveolar macrophages. Am. J. Respir. Cell Mol. Biol. 38, 380–385 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Meng, D. & Jianjun, X. Tianzhou 1 cargo spacecraft leaves orbit. Aerosp. China 3, 62 (2017).

    Google Scholar 

  58. Zhao, H., Qiu, J., Tang, B., Kang, Q. & Hu, W. The SJ-10 recoverable microgravity satellite of China. J. Space Exploration. 5, 101 (2016).

    Google Scholar 

  59. Hu, W. et al. Space experiments onboard the microgravity satellite SJ-10. Microgravity Sci. Technol. 26, 159–169 (2014).

    Article  Google Scholar 

  60. Zhang, C. et al. Space microgravity drives transdifferentiation of human bone marrow-derived mesenchymal stem cells from osteogenesis to adipogenesis. FASEB J. 32, 4444–4458 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Wang, P. et al. Spaceflight/microgravity inhibits the proliferation of hematopoietic stem cells by decreasing Kit-Ras/cAMP-CREB pathway networks as evidenced by RNA-Seq assays. FASEB J. 33, 5903–5913 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hu, W. R. et al. Space program SJ-10 of microgravity research. Microgravity Sci. Technol. 26, 159–169 (2014).

    Article  Google Scholar 

  63. Zhang M., et al. Facilities and techniques of space life science. In Life Science in Space: Experiments on Board the SJ-10 Recoverable Satellite (ed. Duan E., Long M.) 361-398 (Springer Singapore, 2019).

  64. Liu, P. C. et al. Transfection of the IHH gene into rabbit BMSCs in a simulated microgravity environment promotes chondrogenic differentiation and inhibits cartilage aging. Oncotarget 7, 62873–62885 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Odeleye, A. O. O., Castillo-Avila, S., Boon, M., Martin, H. & Coopman, K. Development of an optical system for the non-invasive tracking of stem cell growth on microcarriers. Biotechnol. Bioeng. 114, 2032–2042 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lei, X. et al. Effect of microgravity on proliferation and differentiation of embryonic stem cells in an automated culturing system during the TZ-1 space mission. Cell Prolif. 51, e12466 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Klaus, D. M., Todd, P. & Schatz, A. Functional weightlessness during clinorotation of cell suspensions. Adv. Space Res. 21, 1315–1318 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Begley, C. M. & Kleis, S. J. The fluid dynamic and shear environment in the NASA/JSC rotating-wall perfused-vessel bioreactor. Biotechnol. Bioeng. 70, 32–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Liu, G. et al. An instructive role of donor macrophages in mixed chimeras in the induction of recipient CD4(+)Foxp3(+) Treg cells. Immunol. Cell Biol. 89, 827–835 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Yang, T. et al. TSC1 controls IL-1beta expression in macrophages via mTORC1-dependent C/EBPbeta pathway. Cell Mol. Immunol. 13, 640–650 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Sun, B. et al. Characterization and allergic role of IL-33-induced neutrophil polarization. Cell Mol. Immunol. 15, 782–793 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Yu, G. C., Wang, L. G., Han, Y. Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16, 284–287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yamada, T., Letunic, I., Okuda, S., Kanehisa, M. & Bork, P. iPath2.0: interactive pathway explorer. Nucleic Acids Res. 39(Web Server issue), W412–W415 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xie, C. et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 39(Web Server issue), W316–W322 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang, L., Feng, Z., Wang, X., Wang, X. & Zhang, X. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26, 136–138 (2010).

    Article  PubMed  CAS  Google Scholar 

  76. Walter, W., Sanchez-Cabo, F. & Ricote, M. GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics 31, 2912–2914 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Schep, A. N. & Kummerfeld, S. K. iheatmapr: interactive complex heatmaps in R. J. Open Source Softw. 2, 359 (2017).

    Article  Google Scholar 

  78. Moon, J. S. et al. NOX4-dependent fatty acid oxidation promotes NLRP3 inflammasome activation in macrophages. Nat. Med. 22, 1002–1012 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors appreciate Drs. Yuzhu Hou and Peng Wang for their critical review of our manuscript. This work was supported by grants from the National Key Research and Development Program of China (2017YFA0105002, Y.Z., 2017YFA0104402, L.L.), Joint Funds of the National Natural Science Foundation of China (U1738111, Y.Z.), the China Manned Space Flight Technology Project (TZ-1), and the National Natural Science Foundation Youth Fund (31800741, L.S.).

Author information

Authors and Affiliations

Authors

Contributions

Y.Z., H.T., and L.S. conceived the study and designed the experiments. L.S. analyzed and interpreted all the data and drafted the manuscript with input from all coauthors. H.T. prepared the mouse HPCs and performed the cell experiments. P.W. conducted the molecular experiments. L.L., Z.Z., and J.Z. processed the raw data from NGS. Y.Z. supervised the project and provided critical feedback at all stages.

Corresponding author

Correspondence to Yong Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, L., Tian, H., Wang, P. et al. Spaceflight and simulated microgravity suppresses macrophage development via altered RAS/ERK/NFκB and metabolic pathways. Cell Mol Immunol 18, 1489–1502 (2021). https://doi.org/10.1038/s41423-019-0346-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-019-0346-6

Keywords

This article is cited by

Search

Quick links