[go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of the cGAS-STING signaling pathway in viral infections, inflammatory and autoimmune diseases

Abstract

Pattern recognition receptors are an essential part of the immune system, which detect pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) and help shape both innate and adaptive immune responses. When dsDNA is present, cyclic GMP-AMP Synthase (cGAS) produces a second messenger called cyclic GMP-AMP (cGAMP), which then triggers an adaptor protein called STING, and eventually activates the expression of type I interferon (IFN) and pro-inflammatory cytokines in immune cells. The cGAS-STING signaling pathway has been receiving a lot of attention lately as a key immune-surveillance mediator. In this review, we summarize the present circumstances of the cGAS-STING signaling pathway in viral infections and inflammatory diseases, as well as autoimmune diseases. Modulation of the cGAS-STING signaling pathway provides potential strategies for treating viral infections, inflammatory diseases, and autoimmune diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: cGAS-STING and related diseases.
Fig. 2: Structural insights and signal transduction mechanisms of cGAS and STING.
Fig. 3: The cGAS-STING signaling pathway.
Fig. 4: SARS-CoV-2 proteins inhibit the cGAS-STING signaling pathway.
Fig. 5: The dual role of type I interferon (IFN) in COVID-19.
Fig. 6: The double edge effect of cGAS-STING signaling pathway in inflammatory bowel disease.
Fig. 7: Therapeutic targeting of cGAS-STING.

Similar content being viewed by others

References

  1. Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev. 2012;249:158–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Ito T. PAMPs and DAMPs as triggers for DIC. J Intensive Care. 2014;2:67.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 2013;339:786–91.

    Article  PubMed  CAS  Google Scholar 

  4. Kigerl KA, de Rivero Vaccari JP, Dietrich WD, Popovich PG, Keane RW. Pattern recognition receptors and central nervous system repair. Exp Neurol. 2014;258:5–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Zhong L, Shu HB. Mitotic inactivation of the cGAS‒MITA/STING pathways. J Mol Cell Biol. 2021;13:721–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Zhang X, Wu J, Du F, Xu H, Sun L, Chen Z, et al. The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Cell Rep. 2014;6:421–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Xie W, Lama L, Adura C, Tomita D, Glickman JF, Tuschl T, et al. Human cGAS catalytic domain has an additional DNA-binding interface that enhances enzymatic activity and liquid-phase condensation. Proc Natl Acad Sci USA. 2019;116:11946–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Liu H, Wang F, Cao Y, Dang Y, Ge B. The multifaceted functions of cGAS. J Mol Cell Biol. 2022;14:mjac031.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Ritchie C, Carozza JA, Li L. Biochemistry, cell biology, and pathophysiology of the innate immune cGAS-cGAMP-STING pathway. Annu Rev Biochem. 2022;91:599–628.

    Article  PubMed  CAS  Google Scholar 

  10. Gao P, Ascano M, Wu Y, Barchet W, Gaffney BL, Zillinger T, et al. Cyclic [G(2’,5’)pA(3’,5’)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell. 2013;153:1094–107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Bai J, Liu F. Nuclear cGAS: sequestration and beyond. Protein Cell. 2022;13:90–101.

    Article  PubMed  Google Scholar 

  12. Cao D, Han X, Fan X, Xu RM, Zhang X. Structural basis for nucleosome-mediated inhibition of cGAS activity. Cell Res. 2020;30:1088–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Kujirai T, Zierhut C, Takizawa Y, Kim R, Negishi L, Uruma N, et al. Structural basis for the inhibition of cGAS by nucleosomes. Science. 2020;370:455–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Hopfner KP, Hornung V. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nat Rev Mol Cell Biol. 2020;21:501–21.

    Article  PubMed  CAS  Google Scholar 

  15. Zhou W, Whiteley AT, de Oliveira Mann CC, Morehouse BR, Nowak RP, Fischer ES, et al. Structure of the human cGAS-DNA complex reveals enhanced control of immune surveillance. Cell. 2018;174:300–11.e11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Ablasser A, Chen ZJ. cGAS in action: expanding roles in immunity and inflammation. Science. 2019;363:eaat8657.

    Article  PubMed  CAS  Google Scholar 

  17. Shang G, Zhang C, Chen ZJ, Bai XC, Zhang X. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP. Nature. 2019;567:389–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Wu MZ, Cheng WC, Chen SF, Nieh S, O’Connor C, Liu CL, et al. miR-25/93 mediates hypoxia-induced immunosuppression by repressing cGAS. Nat Cell Biol. 2017;19:1286–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Chen HY, Pang XY, Xu YY, Zhou GP, Xu HG. Transcriptional regulation of human cyclic GMP-AMP synthase gene. Cell Signal. 2019;62:109355.

    Article  PubMed  CAS  Google Scholar 

  20. Guo H, König R, Deng M, Riess M, Mo J, Zhang L, et al. NLRX1 sequesters STING to negatively regulate the interferon response, thereby facilitating the replication of HIV-1 and DNA viruses. Cell Host Microbe. 2016;19:515–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Seo GJ, Kim C, Shin WJ, Sklan EH, Eoh H, Jung JU. TRIM56-mediated monoubiquitination of cGAS for cytosolic DNA sensing. Nat Commun. 2018;9:613.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tsuchida T, Zou J, Saitoh T, Kumar H, Abe T, Matsuura Y, et al. The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA. Immunity. 2010;33:765–76.

    Article  PubMed  CAS  Google Scholar 

  23. Wang Q, Huang L, Hong Z, Lv Z, Mao Z, Tang Y, et al. The E3 ubiquitin ligase RNF185 facilitates the cGAS-mediated innate immune response. PLoS Pathog. 2017;13:e1006264.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liu ZS, Zhang ZY, Cai H, Zhao M, Mao J, Dai J, et al. RINCK-mediated monoubiquitination of cGAS promotes antiviral innate immune responses. Cell Biosci. 2018;8:35.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Qin Y, Zhou MT, Hu MM, Hu YH, Zhang J, Guo L, et al. RNF26 temporally regulates virus-triggered type I interferon induction by two distinct mechanisms. PLoS Pathog. 2014;10:e1004358.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang Q, Liu X, Cui Y, Tang Y, Chen W, Li S, et al. The E3 ubiquitin ligase AMFR and INSIG1 bridge the activation of TBK1 kinase by modifying the adaptor STING. Immunity. 2014;41:919–33.

    Article  PubMed  CAS  Google Scholar 

  27. Xing J, Zhang A, Zhang H, Wang J, Li XC, Zeng MS, et al. TRIM29 promotes DNA virus infections by inhibiting innate immune response. Nat Commun. 2017;8:945.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang Y, Lian Q, Yang B, Yan S, Zhou H, He L, et al. TRIM30alpha is a negative-feedback regulator of the intracellular DNA and DNA virus-triggered response by targeting STING. PLoS Pathog. 2015;11:e1005012.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhong B, Zhang L, Lei C, Li Y, Mao AP, Yang Y, et al. The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity. 2009;30:397–407.

    Article  PubMed  CAS  Google Scholar 

  30. Ni G, Konno H, Barber GN. Ubiquitination of STING at lysine 224 controls IRF3 activation. Sci Immunol. 2017;2:eaah7119.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chen Y, Wang L, Jin J, Luan Y, Chen C, Li Y, et al. p38 inhibition provides anti-DNA virus immunity by regulation of USP21 phosphorylation and STING activation. J Exp Med. 2017;214:991–1010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Zhang M, Zhang MX, Zhang Q, Zhu GF, Yuan L, Zhang DE, et al. USP18 recruits USP20 to promote innate antiviral response through deubiquitinating STING/MITA. Cell Res. 2016;26:1302–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Lian H, Wei J, Zang R, Ye W, Yang Q, Zhang XN, et al. ZCCHC3 is a co-sensor of cGAS for dsDNA recognition in innate immune response. Nat Commun. 2018;9:3349.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Luo WW, Li S, Li C, Lian H, Yang Q, Zhong B, et al. iRhom2 is essential for innate immunity to DNA viruses by mediating trafficking and stability of the adaptor STING. Nat Immunol. 2016;17:1057–66.

    Article  PubMed  CAS  Google Scholar 

  35. Chen M, Meng Q, Qin Y, Liang P, Tan P, He L, et al. TRIM14 Inhibits cGAS degradation mediated by selective autophagy receptor p62 to promote innate immune responses. Mol Cell. 2016;64:105–19.

    Article  PubMed  CAS  Google Scholar 

  36. Hu MM, Yang Q, Xie XQ, Liao CY, Lin H, Liu TT, et al. Sumoylation promotes the stability of the DNA sensor cGAS and the adaptor STING to regulate the kinetics of response to DNA virus. Immunity. 2016;45:555–69.

    Article  PubMed  CAS  Google Scholar 

  37. Cui Y, Yu H, Zheng X, Peng R, Wang Q, Zhou Y, et al. SENP7 potentiates cGAS activation by relieving SUMO-mediated inhibition of cytosolic DNA sensing. PLoS Pathog. 2017;13:e1006156.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Xia P, Ye B, Wang S, Zhu X, Du Y, Xiong Z, et al. Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity. Nat Immunol. 2016;17:369–78.

    Article  PubMed  CAS  Google Scholar 

  39. Liu ZS, Cai H, Xue W, Wang M, Xia T, Li WJ, et al. G3BP1 promotes DNA binding and activation of cGAS. Nat Immunol. 2019;20:18–28.

    Article  PubMed  CAS  Google Scholar 

  40. Du M, Chen ZJ. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science. 2018;361:704–09.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Zhang L, Wei N, Cui Y, Hong Z, Liu X, Wang Q, et al. The deubiquitinase CYLD is a specific checkpoint of the STING antiviral signaling pathway. PLoS Pathog. 2018;14:e1007435.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Liao CY, Lei CQ, Shu HB. PCBP1 modulates the innate immune response by facilitating the binding of cGAS to DNA. Cell Mol Immunol. 2021;18:2334–43.

    Article  PubMed  CAS  Google Scholar 

  43. Yoh SM, Schneider M, Seifried J, Soonthornvacharin S, Akleh RE, Olivieri KC, et al. PQBP1 is a proximal sensor of the cGAS-dependent innate response to HIV-1. Cell. 2015;161:1293–305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Li Y, James SJ, Wyllie DH, Wynne C, Czibula A, Bukhari A, et al. TMEM203 is a binding partner and regulator of STING-mediated inflammatory signaling in macrophages. Proc Natl Acad Sci USA. 2019;116:16479–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Zhou Q, Lin H, Wang S, Wang S, Ran Y, Liu Y, et al. The ER-associated protein ZDHHC1 is a positive regulator of DNA virus-triggered, MITA/STING-dependent innate immune signaling. Cell Host Microbe. 2014;16:450–61.

    Article  PubMed  CAS  Google Scholar 

  46. Sun MS, Zhang J, Jiang LQ, Pan YX, Tan JY, Yu F, et al. TMED2 potentiates cellular IFN responses to DNA viruses by reinforcing MITA dimerization and facilitating its trafficking. Cell Rep. 2018;25:3086–98.e3.

    Article  PubMed  CAS  Google Scholar 

  47. Tan YS, Sansanaphongpricha K, Xie Y, Donnelly CR, Luo X, Heath BR, et al. Mitigating SOX2-potentiated immune escape of head and neck squamous cell carcinoma with a STING-inducing nanosatellite vaccine. Clin Cancer Res. 2018;24:4242–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Ghosh A, Shao L, Sampath P, Zhao B, Patel NV, Zhu J, et al. Oligoadenylate-synthetase-family protein OASL inhibits activity of the DNA sensor cGAS during DNA virus infection to limit interferon production. Immunity. 2019;50:51–63.e5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Lum KK, Song B, Federspiel JD, Diner BA, Howard T, Cristea IM. Interactome and proteome dynamics uncover immune modulatory associations of the pathogen sensing factor cGAS. Cell Syst. 2018;7:627–42.e6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Seo GJ, Yang A, Tan B, Kim S, Liang Q, Choi Y, et al. Akt kinase-mediated checkpoint of cGAS DNA sensing pathway. Cell Rep. 2015;13:440–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Srikanth S, Woo JS, Wu B, El-Sherbiny YM, Leung J, Chupradit K, et al. The Ca(2+) sensor STIM1 regulates the type I interferon response by retaining the signaling adaptor STING at the endoplasmic reticulum. Nat Immunol. 2019;20:152–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Hansen AL, Buchan GJ, Ruhl M, Mukai K, Salvatore SR, Ogawa E, et al. Nitro-fatty acids are formed in response to virus infection and are potent inhibitors of STING palmitoylation and signaling. Proc Natl Acad Sci USA. 2018;115:E7768–E75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Xia T, Yi XM, Wu X, Shang J, Shu HB. PTPN1/2-mediated dephosphorylation of MITA/STING promotes its 20S proteasomal degradation and attenuates innate antiviral response. Proc Natl Acad Sci USA. 2019;116:20063–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Yang L, Xie X, Tu Z, Fu J, Xu D, Zhou Y. The signal pathways and treatment of cytokine storm in COVID-19. Signal Transduct Target Ther. 2021;6:255.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Domizio JD, Gulen MF, Saidoune F, Thacker VV, Yatim A, Sharma K, et al. The cGAS-STING pathway drives type I IFN immunopathology in COVID-19. Nature. 2022;603:145–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Redondo N, Zaldivar-Lopez S, Garrido JJ, Montoya M. SARS-CoV-2 accessory proteins in viral pathogenesis: knowns and unknowns. Front Immunol. 2021;12:708264.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Yan W, Zheng Y, Zeng X, He B, Cheng W. Structural biology of SARS-CoV-2: open the door for novel therapies. Signal Transduct Target Ther. 2022;7:26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Jiang HW, Li Y, Zhang HN, Wang W, Yang X, Qi H, et al. SARS-CoV-2 proteome microarray for global profiling of COVID-19 specific IgG and IgM responses. Nat Commun. 2020;11:3581.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Jiang HW, Zhang HN, Meng QF, Xie J, Li Y, Chen H, et al. SARS-CoV-2 Orf9b suppresses type I interferon responses by targeting TOM70. Cell Mol Immunol. 2020;17:998–1000.

    Article  PubMed  CAS  Google Scholar 

  60. Han L, Zhuang MW, Deng J, Zheng Y, Zhang J, Nan ML, et al. SARS-CoV-2 ORF9b antagonizes type I and III interferons by targeting multiple components of the RIG-I/MDA-5-MAVS, TLR3-TRIF, and cGAS-STING signaling pathways. J Med Virol. 2021;93:5376–89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Galani IE, Rovina N, Lampropoulou V, Triantafyllia V, Manioudaki M, Pavlos E, et al. Untuned antiviral immunity in COVID-19 revealed by temporal type I/III interferon patterns and flu comparison. Nat Immunol. 2021;22:32–40.

    Article  PubMed  CAS  Google Scholar 

  62. Zhou Z, Ren L, Zhang L, Zhong J, Xiao Y, Jia Z, et al. Heightened innate immune responses in the respiratory tract of COVID-19 patients. Cell Host Microbe. 2020;27:883–90.e2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Smith N, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. 2020;369:718–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Moller R, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181:1036–45.e9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Zuliani-Alvarez L, Govasli ML, Rasaiyaah J, Monit C, Perry SO, Sumner RP, et al. Evasion of cGAS and TRIM5 defines pandemic HIV. Nat Microbiol. 2022;7:1762–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Lahaye X, Satoh T, Gentili M, Cerboni S, Conrad C, Hurbain I, et al. The capsids of HIV-1 and HIV-2 determine immune detection of the viral cDNA by the innate sensor cGAS in dendritic cells. Immunity. 2013;39:1132–42.

    Article  PubMed  CAS  Google Scholar 

  67. Scagnolari C, Antonelli G. Type I interferon and HIV: subtle balance between antiviral activity, immunopathogenesis and the microbiome. Cytokine Growth Factor Rev. 2018;40:19–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Wang Y, Qian G, Zhu L, Zhao Z, Liu Y, Han W, et al. HIV-1 Vif suppresses antiviral immunity by targeting STING. Cell Mol Immunol. 2022;19:108–21.

    Article  PubMed  CAS  Google Scholar 

  69. Lahaye X, Gentili M, Silvin A, Conrad C, Picard L, Jouve M, et al. NONO detects the nuclear HIV capsid to promote cGAS-mediated innate immune activation. Cell. 2018;175:488–501.e22.

    Article  PubMed  CAS  Google Scholar 

  70. Decout A, Katz JD, Venkatraman S, Ablasser A. The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nat Rev Immunol. 2021;21:548–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Burdette BE, Esparza AN, Zhu H, Wang S. Gasdermin D in pyroptosis. Acta Pharm Sin B. 2021;11:2768–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Wottawa F, Bordoni D, Baran N, Rosenstiel P, Aden K. The role of cGAS/STING in intestinal immunity. Eur J Immunol. 2021;51:785–97.

    Article  PubMed  CAS  Google Scholar 

  73. Hu Q, Zhou Q, Xia X, Shao L, Wang M, Lu X, et al. Cytosolic sensor STING in mucosal immunity: a master regulator of gut inflammation and carcinogenesis. J Exp Clin Cancer Res. 2021;40:39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Wang Z, Guo K, Gao P, Pu Q, Lin P, Qin S, et al. Microbial and genetic-based framework identifies drug targets in inflammatory bowel disease. Theranostics. 2021;11:7491–506.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Ahn J, Son S, Oliveira SC, Barber GN. STING-dependent signaling underlies IL-10 controlled inflammatory colitis. Cell Rep. 2017;21:3873–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Martin GR, Blomquist CM, Henare KL, Jirik FR. Stimulator of interferon genes (STING) activation exacerbates experimental colitis in mice. Sci Rep. 2019;9:14281.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hu S, Fang Y, Chen X, Cheng T, Zhao M, Du M, et al. cGAS restricts colon cancer development by protecting intestinal barrier integrity. Proc Natl Acad Sci USA. 2021;118:e2105747118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Khan S, Mentrup HL, Novak EA, Siow VS, Wang Q, Crawford EC, et al. Cyclic GMP-AMP synthase contributes to epithelial homeostasis in intestinal inflammation via Beclin-1-mediated autophagy. FASEB J. 2022;36:e22282.

    Article  PubMed  CAS  Google Scholar 

  79. Ter Horst EN, Krijnen PAJ, Hakimzadeh N, Robbers L, Hirsch A, Nijveldt R, et al. Elevated monocyte-specific type I interferon signalling correlates positively with cardiac healing in myocardial infarct patients but interferon alpha application deteriorates myocardial healing in rats. Basic Res Cardiol. 2018;114:1.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Oduro PK, Zheng X, Wei J, Yang Y, Wang Y, Zhang H, et al. The cGAS-STING signaling in cardiovascular and metabolic diseases: future novel target option for pharmacotherapy. Acta Pharm Sin B. 2022;12:50–75.

    Article  PubMed  CAS  Google Scholar 

  81. Zhang Y, Chen W, Wang Y. STING is an essential regulator of heart inflammation and fibrosis in mice with pathological cardiac hypertrophy via endoplasmic reticulum (ER) stress. Biomed Pharmacother. 2020;125:110022.

    Article  PubMed  CAS  Google Scholar 

  82. Kwon J, Bakhoum SF. The cytosolic DNA-sensing cGAS-STING pathway in cancer. Cancer Discov. 2020;10:26–39.

    Article  PubMed  CAS  Google Scholar 

  83. Chen M, Linstra R, van Vugt M. Genomic instability, inflammatory signaling and response to cancer immunotherapy. Biochim Biophys Acta Rev Cancer. 2022;1877:188661.

    Article  PubMed  CAS  Google Scholar 

  84. Wang H, Hu S, Chen X, Shi H, Chen C, Sun L, et al. cGAS is essential for the antitumor effect of immune checkpoint blockade. Proc Natl Acad Sci USA. 2017;114:1637–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. An X, Zhu Y, Zheng T, Wang G, Zhang M, Li J, et al. An analysis of the expression and association with immune cell infiltration of the cGAS/STING pathway in pan-cancer. Mol Ther Nucleic Acids. 2019;14:80–9.

    Article  PubMed  CAS  Google Scholar 

  86. Bakhoum SF, Ngo B, Laughney AM, Cavallo JA, Murphy CJ, Ly P, et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature. 2018;553:467–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Woo SR, Fuertes MB, Corrales L, Spranger S, Furdyna MJ, Leung MY, et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity. 2014;41:830–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Deng L, Liang H, Xu M, Yang X, Burnette B, Arina A, et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity. 2014;41:843–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Xu MM, Pu Y, Han D, Shi Y, Cao X, Liang H, et al. Dendritic cells but not macrophages sense tumor mitochondrial DNA for cross-priming through signal regulatory protein alpha signaling. Immunity. 2017;47:363–73.e5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Tian J, Zhang D, Kurbatov V, Wang Q, Wang Y, Fang D, et al. 5-Fluorouracil efficacy requires anti-tumor immunity triggered by cancer-cell-intrinsic STING. EMBO J. 2021;40:e106065.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Corrales L, Glickman LH, McWhirter SM, Kanne DB, Sivick KE, Katibah GE, et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 2015;11:1018–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Hu Y, Chen B, Yang F, Su Y, Yang D, Yao Y, et al. Emerging role of the cGAS-STING signaling pathway in autoimmune diseases: biologic function, mechanisms and clinical prospection. Autoimmun Rev. 2022;21:103155.

    Article  PubMed  CAS  Google Scholar 

  93. Wobma H, Shin DS, Chou J, Dedeoglu F. Dysregulation of the cGAS-STING pathway in monogenic autoinflammation and lupus. Front Immunol. 2022;13:905109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Tonduti D, Fazzi E, Badolato R, Orcesi S. Novel and emerging treatments for Aicardi-Goutieres syndrome. Expert Rev Clin Immunol. 2020;16:189–98.

    Article  PubMed  CAS  Google Scholar 

  95. Stetson DB, Ko JS, Heidmann T, Medzhitov R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell. 2008;134:587–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Gray EE, Treuting PM, Woodward JJ, Stetson DB. Cutting edge: cGAS is required for lethal autoimmune disease in the Trex1-deficient mouse model of aicardi-goutieres syndrome. J Immunol. 2015;195:1939–43.

    Article  PubMed  CAS  Google Scholar 

  97. Chereau D, Kerff F, Graceffa P, Grabarek Z, Langsetmo K, Dominguez R. Actin-bound structures of Wiskott-Aldrich syndrome protein (WASP)-homology domain 2 and the implications for filament assembly. Proc Natl Acad Sci USA. 2005;102:16644–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Amadio R, Piperno GM, Benvenuti F. Self-DNA sensing by cGAS-STING and TLR9 in autoimmunity: is the cytoskeleton in control? Front Immunol. 2021;12:657344.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Piperno GM, Naseem A, Silvestrelli G, Amadio R, Caronni N, Cervantes-Luevano KE, et al. Wiskott-Aldrich syndrome protein restricts cGAS/STING activation by dsDNA immune complexes. JCI Insight. 2020;5:e132857.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Motwani M, McGowan J, Antonovitch J, Gao KM, Jiang Z, Sharma S, et al. cGAS-STING pathway does not promote autoimmunity in murine models of SLE. Front Immunol. 2021;12:605930.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Kato Y, Park J, Takamatsu H, Konaka H, Aoki W, Aburaya S, et al. Apoptosis-derived membrane vesicles drive the cGAS-STING pathway and enhance type I IFN production in systemic lupus erythematosus. Ann Rheum Dis. 2018;77:1507–15.

    Article  PubMed  CAS  Google Scholar 

  102. An J, Durcan L, Karr RM, Briggs TA, Rice GI, Teal TH, et al. Expression of cyclic GMP-AMP synthase in patients with systemic lupus erythematosus. Arthritis Rheumatol. 2017;69:800–07.

    Article  PubMed  CAS  Google Scholar 

  103. Tian M, Liu W, Zhang Q, Huang Y, Li W, Wang W, et al. MYSM1 represses innate immunity and autoimmunity through suppressing the cGAS-STING pathway. Cell Rep. 2020;33:108297.

    Article  PubMed  CAS  Google Scholar 

  104. Vincent J, Adura C, Gao P, Luz A, Lama L, Asano Y, et al. Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice. Nat Commun. 2017;8:750.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Lama L, Adura C, Xie W, Tomita D, Kamei T, Kuryavyi V, et al. Development of human cGAS-specific small-molecule inhibitors for repression of dsDNA-triggered interferon expression. Nat Commun. 2019;10:2261.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Hall J, Brault A, Vincent F, Weng S, Wang H, Dumlao D, et al. Discovery of PF-06928215 as a high affinity inhibitor of cGAS enabled by a novel fluorescence polarization assay. PLoS One. 2017;12:e0184843.

    Article  PubMed  PubMed Central  Google Scholar 

  107. An J, Woodward JJ, Sasaki T, Minie M, Elkon KB. Cutting edge: antimalarial drugs inhibit IFN-beta production through blockade of cyclic GMP-AMP synthase-DNA interaction. J Immunol. 2015;194:4089–93.

    Article  PubMed  CAS  Google Scholar 

  108. Wang M, Sooreshjani MA, Mikek C, Opoku-Temeng C, Sintim HO. Suramin potently inhibits cGAMP synthase, cGAS, in THP1 cells to modulate IFN-beta levels. Future Med Chem. 2018;10:1301–17.

    Article  PubMed  CAS  Google Scholar 

  109. Dai J, Huang YJ, He X, Zhao M, Wang X, Liu ZS, et al. Acetylation blocks cGAS activity and inhibits self-DNA-induced autoimmunity. Cell. 2019;176:1447–60.e14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Li S, Hong Z, Wang Z, Li F, Mei J, Huang L, et al. The cyclopeptide astin C specifically inhibits the innate immune CDN sensor STING. Cell Rep. 2018;25:3405–21.e7.

    Article  PubMed  CAS  Google Scholar 

  111. Haag SM, Gulen MF, Reymond L, Gibelin A, Abrami L, Decout A, et al. Targeting STING with covalent small-molecule inhibitors. Nature. 2018;559:269–73.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Macau Science and Technology Development Fund, 0058/2020/A, 0018/2023/AMJ, 011/AIJ/2020 and 0003/2021/ AKP; Swedish Research Council (Vetenskapsrådet) 2019–01884; Swedish Cancer Foundation (Cancerfonden) 20 0680 Pj; CIMED FoUI-975445.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Mm., Zhao, Y., Liu, J. et al. The role of the cGAS-STING signaling pathway in viral infections, inflammatory and autoimmune diseases. Acta Pharmacol Sin 45, 1997–2010 (2024). https://doi.org/10.1038/s41401-023-01185-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01185-5

Keywords

Search

Quick links