Abstract
Using a well-controlled quantum system to simulate complex quantum matter is an idea that has been around for 30 years and put into practice in systems of ultracold atoms for more than a decade. Much recent excitement has focused on a new implementation of quantum simulators using superconducting circuits, where conventional microchip fabrication can be used to take design concepts to experimental reality, quickly and flexibly. Because the quantum ‘particles’ in these simulators are circuit excitations rather than physical particles subject to conservation laws, superconducting simulators provide a complement to ultracold atoms by naturally accessing non-equilibrium physics. Here, we review the recent wealth of theoretical explorations and experimental prospects of realizing these new devices.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Feynman, R. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982).
Fisher, M. P. A., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid–insulator transition. Phys. Rev. B 40, 546–570 (1989).
Aspuru-Guzik, A., Dutoi, A. D., Love, P. J. & Head-Gordon, M. Simulated quantum computation of molecular energies. Science 309, 1704–1707 (2005).
Lanyon, B. P. et al. Towards quantum chemistry on a quantum computer. Nature Chem. 2, 106–111 (2010).
Buluta, I. & Nori, F. Quantum simulators. Science 326, 108–111 (2009).
Lewenstein, M. et al. Ultracold atomic gases in optical lattices: Mimicking condensed matter physics and beyond. Adv. Phys. 56, 243–379 (2007).
Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).
Bloch, I., Dalibard, J. & Nascimbène, S. Quantum simulations with ultracold quantum gases. Nature Phys. 8, 267–276 (2012).
Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).
Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nature Phys. 8, 285–291 (2012).
Gerritsma, R. et al. Quantum simulation of the Dirac equation. Nature 463, 68–71 (2010).
Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nature Phys. 8, 277–284 (2012).
Mooij, J. E. & Schön, G. in Coherence in Superconducting Networks Vol. 152 (eds Mooij, J. E. & Schön, G.) (NATO Proceedings, North-Holland, 1988).
Fazio, R. & van der Zant, H. Quantum phase transitions and vortex dynamics in superconducting networks. Phys. Rep. 355, 235–334 (2001).
Bruder, C., Fazio, R. & Schön, G. The Bose–Hubbard model: From Josephson junction arrays to optical lattices. Ann. Phys. (Leipzig) 14, 566–577 (2005).
Manousakis, E. A quantum-dot array as model for copper-oxide superconductors: A dedicated quantum simulator for the many-fermion problem. J. Low Temp. Phys. 126, 1501–1513 (2002).
Platzman, P. M. Quantum computing with electrons floating on liquid helium. Science 284, 1967–1969 (1999).
Makhlin, Y., Schön, G. & Shnirman, A. Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357–400 (2001).
Devoret, M. & Martinis, J. M. Implementing qubits with superconducting integrated circuits. Quantum Inf. Process. 3, 163–203 (2004).
Clarke, J. & Wilhelm, F. Superconducting quantum bits. Nature 453, 1031–1042 (2008).
Schoelkopf, R. J. & Girvin, S. M. Wiring up quantum systems. Nature 451, 664–669 (2008).
Bouchiat, V., Vion, D., Joyez, P., Esteve, D. & Devoret, M. Quantum coherence with a single Cooper pair. Phys. Scr. T76, 165–170 (1998).
Nakamura, Y., Pashkin, Y. & Tsai, J. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786–788 (1999).
Vion, D. et al. Manipulating the quantum state of an electrical circuit. Science 296, 886–889 (2002).
Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).
Schreier, J. et al. Suppressing charge noise decoherence in superconducting charge qubits. Phys. Rev. B 77, 180502 (2008).
Mooij, J. E. et al. Josephson persistent-current qubit. Science 285, 1036–1039 (1999).
Friedman, J. R., Patel, V., Chen, W., Tolpygo, S. K. & Lukens, J. E. Quantum superposition of distinct macroscopic states. Nature 406, 43–46 (2000).
Van der Wal, C. H. et al. Quantum superposition of macroscopic persistent-current states. Science 290, 773–777 (2000).
Martinis, J. M., Nam, S., Aumentado, J. & Urbina, C. Rabi oscillations in a large Josephson-junction qubit. Phys. Rev. Lett. 89, 117901 (2002).
Houck, A. A., Koch, J., Devoret, M., Girvin, S. M. & Schoelkopf, R. J. Life after charge noise: Recent results with transmon qubits. Quantum Inf. Process. 8, 105–115 (2009).
Pashkin, Y. A. et al. Quantum oscillations in two coupled charge qubits. Nature 421, 823–826 (2003).
McDermott, R. et al. Simultaneous state measurement of coupled Josephson phase qubits. Science 307, 1299–1302 (2005).
Majer, J., Paauw, F., ter Haar, A., Harmans, C. & Mooij, J. Spectroscopy on two coupled superconducting flux qubits. Phys. Rev. Lett. 94, 090501 (2005).
Hime, T. et al. Solid-state qubits with current-controlled coupling. Science 314, 1427–1429 (2006).
Niskanen, A. O. et al. Quantum coherent tunable coupling of superconducting qubits. Science 316, 723–726 (2007).
Harris, R. et al. Sign- and magnitude-tunable coupler for superconducting flux qubits. Phys. Rev. Lett. 98, 177001 (2007).
Van der Ploeg, S. et al. Controllable coupling of superconducting flux qubits. Phys. Rev. Lett. 98, 057004 (2007).
Allman, M. S. et al. rf-SQUID-mediated coherent tunable coupling between a superconducting phase qubit and a lumped-element resonator. Phys. Rev. Lett. 104, 177004 (2010).
Bialczak, R. et al. Fast tunable coupler for superconducting qubits. Phys. Rev. Lett. 106, 060501 (2011).
Srinivasan, S., Hoffman, A., Gambetta, J. & Houck, A. Tunable coupling in circuit quantum electrodynamics using a superconducting charge qubit with a V-shaped energy level diagram. Phys. Rev. Lett. 106, 083601 (2011).
Blais, A., Huang, R.-S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A 69, 062320 (2004).
Sillanpää, M. A., Park, J. I. & Simmonds, R. W. Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Nature 449, 438–442 (2007).
Majer, J. et al. Coupling superconducting qubits via a cavity bus. Nature 449, 443–447 (2007).
Koch, J., Houck, A. A., Le Hur, K. & Girvin, S. M. Time-reversal-symmetry breaking in circuit-QED-based photon lattices. Phys. Rev. A 82, 043811 (2010).
Tsomokos, D., Ashhab, S. & Nori, F. Using superconducting qubit circuits to engineer exotic lattice systems. Phys. Rev. A 82, 052311 (2010).
Leek, P. J. et al. Observation of Berry’s phase in a solid-state qubit. Science 318, 1889–1892 (2007).
Neeley, M. et al. Emulation of a quantum spin with a superconducting phase qudit. Science 325, 722–725 (2009).
Johnson, M. W. et al. Quantum annealing with manufactured spins. Nature 473, 194–198 (2011).
Bishop, L. S. et al. Nonlinear response of the vacuum Rabi resonance. Nature Phys. 5, 105–109 (2008).
Fink, J. M. et al. Climbing the Jaynes–Cummings ladder and observing its nonlinearity in a cavity QED system. Nature 454, 315–318 (2008).
Hofheinz, M. et al. Generation of Fock states in a superconducting quantum circuit. Nature 454, 310–314 (2008).
Lang, C. et al. Observation of resonant photon blockade at microwave frequencies using correlation function measurements. Phys. Rev. Lett. 106, 243601 (2011).
Hoffman, A. et al. Dispersive photon blockade in a superconducting circuit. Phys. Rev. Lett. 107, 053602 (2011).
Schmidt, S., Gerace, D., Houck, A. A., Blatter, G. & Türeci, H. E. Nonequilibrium delocalization–localization transition of photons in circuit quantum electrodynamics. Phys. Rev. B 82, 100507 (2010).
Irish, E. K., Ogden, C. D. & Kim, M. S. Polaritonic characteristics of insulator and superfluid states in a coupled-cavity array. Phys. Rev. A 77, 033801 (2008).
Hartmann, M., Brandão, F. & Plenio, M. Strongly interacting polaritons in coupled arrays of cavities. Nature Phys. 2, 849–855 (2006).
Angelakis, D., Santos, M. & Bose, S. Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays. Phys. Rev. A 76, 031805 (2007).
Hartmann, M., Brandão, F. & Plenio, M. Effective spin systems in coupled microcavities. Phys. Rev. Lett. 99, 160501 (2007).
Makin, M. I., Cole, J. H., Tahan, C., Hollenberg, L. & Greentree, A. D. Quantum phase transitions in photonic cavities with two-level systems. Phys. Rev. A 77, 053819 (2008).
Nunnenkamp, A., Koch, J. & Girvin, S. M. Synthetic gauge fields and homodyne transmission in Jaynes–Cummings lattices. New J. Phys. 13, 095008 (2011).
Carusotto, I. et al. Fermionized photons in an array of driven dissipative nonlinear cavities. Phys. Rev. Lett. 103, 033601 (2009).
Gerace, D., Türeci, H. E., Imamoglu, A., Giovannetti, V. & Fazio, R. The quantum-optical Josephson interferometer. Nature Phys. 5, 281–284 (2009).
Leib, M. & Hartmann, M. J. Bose–Hubbard dynamics of polaritons in a chain of circuit quantum electrodynamics cavities. New J. Phys. 12, 093031 (2010).
Imry, Y. Introduction to Mesoscopic Physics (Oxford Univ. Press, 1997).
Lerner, I. V., Altshuler, B. L. & Gefen, Y. (eds) in Fundamental Problems of Mesoscopic Physics: Interactions and Decoherence (Springer, 2004).
Alhassid, Y. The statistical theory of quantum dots. Rev. Mod. Phys. 72, 895–968 (2000).
Kurland, I., Aleiner, I. & Altshuler, B. Mesoscopic magnetization fluctuations for metallic grains close to the Stoner instability. Phys. Rev. B 62, 14886 (2000).
Greentree, A. D., Tahan, C., Cole, J. H. & Hollenberg, L. Quantum phase transitions of light. Nature Phys. 2, 856–861 (2006).
Illuminati, F. Quantum optics: Light does matter. Nature Phys. 2, 803–804 (2006).
Hartmann, M., Brandão, F. & Plenio, M. Quantum many-body phenomena in coupled cavity arrays. Laser Photon. Rev. 2, 527–556 (2008).
Tomadin, A. & Fazio, R. Many-body phenomena in QED-cavity arrays. J. Opt. Soc. B 27, A130 (2010).
Sachdev, S. Quantum Phase Transitions (Cambridge Univ. Press, 1999).
Na, N., Utsunomiya, S., Tian, L. & Yamamoto, Y. Strongly correlated polaritons in a two-dimensional array of photonic crystal microcavities. Phys. Rev. A 77, 031803 (2008).
Koch, J. & Le Hur, K. Superfluid-Mott-insulator transition of light in the Jaynes–Cummings lattice. Phys. Rev. A 80, 023811 (2009).
Schmidt, S. & Blatter, G. Strong coupling theory for the Jaynes–Cummings–Hubbard model. Phys. Rev. Lett. 103, 086403 (2009).
Hohenadler, M., Aichhorn, M., Schmidt, S. & Pollet, L. Dynamical critical exponent of the Jaynes–Cummings–Hubbard model. Phys. Rev. A 84, 041608(R) (2011).
Metzner, W. Linked-cluster expansion around the atomic limit of the Hubbard model. Phys. Rev. B 43, 8549–8563 (1991).
Zhao, J., Sandvik, A. W. & Ueda, K. Insulator to superfluid transition in coupled photonic cavities in two dimensions. Preprint at http://arxiv.org/abs/0806.3603 (2008).
Aichhorn, M., Hohenadler, M., Tahan, C. & Littlewood, P. Quantum fluctuations, temperature, and detuning effects in solid-light systems. Phys. Rev. Lett. 100, 216401 (2008).
Rossini, D. & Fazio, R. Mott-insulating and glassy phases of polaritons in 1D arrays of coupled cavities. Phys. Rev. Lett. 99, 186401 (2007).
Rossini, D., Fazio, R. & Santoro, G. Photon and polariton fluctuations in arrays of QED-cavities. Europhys. Lett. 83, 47011 (2008).
Knap, M., Arrigoni, E. & von der Linden, W. Variational cluster approach for strongly correlated lattice bosons in the superfluid phase. Phys. Rev. B 83, 134507 (2011).
Schmidt, S. & Blatter, G. Excitations of strongly correlated lattice polaritons. Phys. Rev. Lett. 104, 216402 (2010).
Cho, J., Angelakis, D. & Bose, S. Simulation of high-spin Heisenberg models in coupled cavities. Phys. Rev. A 78, 062338 (2008).
Kay, A. & Angelakis, D. Reproducing spin lattice models in strongly coupled atom-cavity systems. Europhys. Lett. 84, 20001 (2008).
Makin, M., Cole, J., Hill, C., Greentree, A. & Hollenberg, L. Time evolution of the one-dimensional Jaynes–Cummings–Hubbard Hamiltonian. Phys. Rev. A 80, 043842 (2009).
Kiffner, M. & Hartmann, M. Dissipation-induced Tonks–Girardeau gas of polaritons. Phys. Rev. A 81, 021806 (2010).
Angelakis, D., Huo, M., Kyoseva, E. & Kwek, L. Luttinger liquid of photons and spin-charge separation in hollow-core fibers. Phys. Rev. Lett. 106, 153601 (2011).
Paredes, B., Zoller, P. & Cirac, J. I. Fractional quantum Hall regime of a gas of ultracold atoms. Solid State Commun. 127, 155–162 (2003).
Sørensen, A., Demler, E. & Lukin, M. Fractional quantum Hall states of atoms in optical lattices. Phys. Rev. Lett. 94, 086803 (2005).
Cho, J., Angelakis, D. & Bose, S. Fractional quantum Hall state in coupled cavities. Phys. Rev. Lett. 101, 246809 (2008).
Kamal, A., Clarke, J. & Devoret, M. H. Noiseless non-reciprocity in a parametric active device. Nature Phys. 7, 311–315 (2011).
Hartmann, M. Polariton crystallization in driven arrays of lossy nonlinear resonators. Phys. Rev. Lett. 104, 113601 (2010).
Tomadin, A. et al. Signatures of the superfluid-insulator phase transition in laser-driven dissipative nonlinear cavity arrays. Phys. Rev. A 81, 061801 (2010).
Astafiev, O. et al. Resonance fluorescence of a single artificial atom. Science 327, 840–843 (2010).
Shen, J-T. & Fan, S. Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a two-level system. Phys. Rev. Lett. 98, 153003 (2007).
Longo, P. & Busch, K. Few-photon transport in low-dimensional systems: Interaction-induced radiation trapping. Phys. Rev. Lett. 104, 023602 (2010).
Le Hur, K. Photonic Kondo resonance and asymptotic freedom from nonlinear optics. Preprint at http://arxiv.org/abs/1104.0708 (2011).
Johnson, B. R. et al. Quantum non-demolition detection of single microwave photons in a circuit. Nature Phys. 6, 663–667 (2010).
Paik, H. et al. How coherent are Josephson junctions? Phys. Rev. Lett. 107, 240501 (2011).
Breuer, H-P. & Petruccione, F. The Theory of Open Quantum Systems (Oxford Univ. Press, 2007).
Acknowledgements
We thank I. Carusotto, D. Gerace, S. M. Girvin, D. Huse, R. Fazio, A. Imamoglu, J. Keeling, M. Schiro, S. Schmidt and A. Tomadin for valuable and stimulating discussions. This work was supported by the National Science Foundation through grant nos. DMR-0953475 and PHY-1055993, and through the Princeton Center for Complex Materials under grant no. DMR-0819860, by the Army Research Office under contract W911NF-11-1-0086, by the Swiss National Science Foundation through grant no. PP00P2-123519/1, and by the Packard Foundation.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Houck, A., Türeci, H. & Koch, J. On-chip quantum simulation with superconducting circuits. Nature Phys 8, 292–299 (2012). https://doi.org/10.1038/nphys2251
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys2251