Abstract
Confinement alters the energy landscape of nanoscale magnets, leading to the appearance of unusual magnetic states, such as vortices, for example. Many basic questions concerning dynamical and interaction effects remain unanswered, and nanomagnets are convenient model systems for studying these fundamental physical phenomena. A single vortex in restricted geometry, also known as a non-localized soliton, possesses a characteristic translational excitation mode that corresponds to spiral-like motion of the vortex core around its equilibrium position. Here, we investigate, by a microwave reflection technique, the dynamics of magnetic soliton pairs confined in lithographically defined, ferromagnetic Permalloy ellipses. Through a comparison with micromagnetic simulations, the observed strong resonances in the subgigahertz frequency range can be assigned to the translational modes of vortex pairs with parallel or antiparallel core polarizations. Vortex polarizations play a negligible role in the static interaction between two vortices, but their effect dominates the dynamics.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Russell, J. S. in Report of the Fourteenth Meeting of the British Association for the Advancement of Science 311–390 (Murray, London, 1844).
Manton, N. & Sutcliffe, P. Topological Solitons (Cambridge Univ. Press, Cambridge, 2004).
Khaykovich, L. et al. Formation of a matter-wave bright soliton. Science 296, 1290–1293 (2002).
Strecker, K. E., Partridge, G. B., Truscott, A. G. & Hulet, R. G. Formation and propagation of matter-wave soliton trains. Nature 417, 150–153 (2002).
Nakazawa, M., Yamada, E. & Kubota, H. Coexistence of self-induced transparency soliton and nonlinear Schrödinger soliton. Phys. Rev. Lett. 66, 2625–2628 (1991).
Matthews, M. R. et al. Vortices in a Bose-Einstein condensate. Phys. Rev. Lett. 83, 2498–2501 (1999).
Lamb, H. Hydrodynamics (Dover, New York, 1945).
Kosevich, A. M., Ivanov, B. A. & Kovalev, A. S. Magnetic solitons. Phys. Rep. 194, 117–238 (1990).
Saitoh, E., Miyajima, H., Yamaoka, T. & Tatara, G. Current-induced resonance and mass determination of a single magnetic domain wall. Nature 432, 203–206 (2004).
Argyle, B. E., Terrenzio, E. & Slonczewski, J. C. Magnetic vortex dynamics using the optical Cotton-Mouton effect. Phys. Rev. Lett. 53, 190–193 (1984).
Shinjo, T., Okuno, T., Hassdorf, R., Shigeto, K. & Ono, T. Magnetic vortex core observation in circular dots of Permalloy. Science 289, 930–932 (2000).
Wachowiak, A. et al. Direct observation of internal spin structure of magnetic vortex cores. Science 298, 577–580 (2002).
Guslienko, K. Yu., Novosad, V., Otani, Y., Shima, H. & Fukamichi, K. Magnetization reversal due to vortex nucleation, displacement, and annihilation in submicron ferromagnetic dot arrays. Phys. Rev. B 65, 024414 (2002).
Cowburn, R. P., Koltsov, D. K., Adeyeye, A. O., Welland, M. E. & Tricker, D. M. Single-domain circular nanomagnets. Phys. Rev. Lett. 83, 1042–1045 (1999).
Thiele, A. A. Steady-state motion of magnetic domains. Phys. Rev. Lett. 30, 230–233 (1973).
Huber, D. L. Dynamics of spin vortices in two-dimensional planar magnets. Phys. Rev. B 26, 3758 (1982).
Guslienko, K. Yu. et al. Eigenfrequencies of vortex state excitations in magnetic submicron-size disks. J. Appl. Phys. 91, 8037–8039 (2002).
Usov, N. A. & Kurkina, L. G. Magnetodynamics of vortex in thin cylindrical platelet. J. Magn. Magn. Mater. 242, 1005–1008 (2002).
Ivanov, B. A. & Zaspel, C. E. High frequency modes in vortex-state nanomagnets. Phys. Rev. Lett. 94, 027205 (2005).
Park, J. P., Eames, P., Engebretson, D. M., Berezovsky, J. & Crowell, P. A. Imaging of spin dynamics in closure domain and vortex structures. Phys. Rev. B 67, 020403 (2003).
Buess, M. et al. Fourier transform imaging of spin vortex eigenmodes. Phys. Rev. Lett. 93, 077207 (2004).
Zaspel, C. E., Ivanov, B. A., Park, J. P. & Crowell, P. A. Excitations in vortex-state Permalloy dots. Phys. Rev. B 50, 24427 (2005).
Puzic, A. et al. Spatially resolved ferromagnetic resonance: Imaging of ferromagnetic eigenmodes. J. Appl. Phys. 97, 10E704 (2005).
Choe, S. B. et al. Vortex core-driven magnetization dynamics. Science 304, 420–422 (2004).
Novosad, V. et al. Spin excitations of magnetic vortices in ferromagnetic nanodots. Phys. Rev. B 66, 052407 (2002).
Giovannini, L. et al. Spin excitations of nanometric cylindrical dots in vortex and saturated magnetic states. Phys. Rev. B 70, 172404 (2004).
Hillebrands, B. & Ounadjela, K. Spin Dynamics in Confined Magnetic Structures I (Topics in Applied Physics, Vol. 83, Springer, Berlin, 2002).
Voelkel, A. R., Mertens, F. G., Bishop, A. R. & Wysin, G. M. Motion of vortex pairs in the ferromagnetic and antiferromagnetic Heisenberg model. Phys. Rev. B 43, 5992–6005 (1991).
Voelkel, A. R., Wysin, G. M., Mertens, F. G., Bishop, A. R. & Schnitzer, H. J. Collective-variable approach to the dynamics of nonlinear magnetic excitations with application to vortices. Phys. Rev. B 50, 12711–12720 (1994).
Kovalev, A. S., Komineas, S. & Mertens, F. G. Scattering of vortex pairs in 2d easy-plane ferromagnets. Eur. Phys. J. B 25, 89–100 (2002).
Guslienko, K. Yu., Buchanan, K. S., Bader, S. D. & Novosad, V. Dynamics of coupled vortices in layered magnetic nanodots. Appl. Phys. Lett. 86, 223112 (2005).
Shibata, J. & Otani, Y. Magnetic vortex dynamics in a two-dimensional square lattice of ferromagnetic nanodisks. Phys. Rev. B 70, 12404 (2004).
Usov, N. A., Chang, C. R. & Wei, Z. H. Buckling instability in thin soft elliptical particles. Phys. Rev. B 66, 184431 (2002).
Vavassori, P. et al. Magnetization reversal via single and double vortex states in submicron Permalloy ellipses. Phys. Rev. B 69, 214404 (2004).
Novosad, V. et al. Magnetic vortex resonance in patterned ferromagnetic dots. Phys. Rev. B 72, 024455 (2005).
Acknowledgements
We thank Y. Otani and J. Pearson for stimulating discussions and R. Divan for lithography support. This work was supported by the US Department of Energy, Basic Energy Sciences, Material Sciences under Contract No. W-31-109-ENG-38. K.S.B. thanks NSERC of Canada for a fellowship. P.E.R. acknowledges support from the Swedish Research Council and Swedish Foundation for Strategic Research.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Buchanan, K., Roy, P., Grimsditch, M. et al. Soliton-pair dynamics in patterned ferromagnetic ellipses. Nature Phys 1, 172–176 (2005). https://doi.org/10.1038/nphys173
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys173
This article is cited by
-
Vortex dynamics and frequency splitting in vertically coupled nanomagnets
Scientific Reports (2017)
-
Magnetic Vortex Based Transistor Operations
Scientific Reports (2014)
-
From chaos to selective ordering of vortex cores in interacting mesomagnets
Nature Communications (2012)
-
Commensurability and chaos in magnetic vortex oscillations
Nature Physics (2012)
-
Direct observation of imprinted antiferromagnetic vortex states in CoO/Fe/Ag(001) discs
Nature Physics (2011)