[go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deletion of TOP3β, a component of FMRP-containing mRNPs, contributes to neurodevelopmental disorders

Abstract

Implicating particular genes in the generation of complex brain and behavior phenotypes requires multiple lines of evidence. The rarity of most high-impact genetic variants typically precludes the possibility of accruing statistical evidence that they are associated with a given trait. We found that the enrichment of a rare chromosome 22q11.22 deletion in a recently expanded Northern Finnish sub-isolate enabled the detection of association between TOP3B and both schizophrenia and cognitive impairment. Biochemical analysis of TOP3β revealed that this topoisomerase was a component of cytosolic messenger ribonucleoproteins (mRNPs) and was catalytically active on RNA. The recruitment of TOP3β to mRNPs was independent of RNA cis-elements and was coupled to the co-recruitment of FMRP, the disease gene product in fragile X mental retardation syndrome. Our results indicate a previously unknown role for TOP3β in mRNA metabolism and suggest that it is involved in neurodevelopmental disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The frequency of neurodevelopmental disorders in Finland varies by region.
Figure 2: The 22q11.22 deletion covers about 240 kb, is present in homozygous form in individuals diagnosed with schizophrenia and/or cognitive deficits, and results in dose-dependent reduction in TOP3β.
Figure 3: TOP3β is part of a cytosolic, mRNP-associated protein complex that contains TDRD3 and FMRP.
Figure 4: TOP3β catalyzes RNA transesterification.
Figure 5: The TTF complex is present on early mRNPs that undergo the pioneer round of translation.
Figure 6: Formation of the TTF complex is essential for the co-recruitment of TOP3β and FMRP into mRNPs.

Similar content being viewed by others

References

  1. Cooper, T.A., Wan, L. & Dreyfuss, G. RNA and disease. Cell 136, 777–793 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jakkula, E. et al. The genome-wide patterns of variation expose significant substructure in a founder population. Am. J. Hum. Genet. 83, 787–794 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Peltonen, L., Jalanko, A. & Varilo, T. Molecular genetics of the Finnish disease heritage. Hum. Mol. Genet. 8, 1913–1923 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Perälä, J. et al. Geographic variation and sociodemographic characteristics of psychotic disorders in Finland. Schizophr. Res. 106, 337–347 (2008).

    Article  PubMed  Google Scholar 

  5. Palmgren, K. Kehittyneisyyden alueittaista eroavuuksista Suomessa [Regional differences in the degree of development in Finland] (Publications of the National Planning Bureau A15, 1964).

  6. Haukka, J., Suvisaari, J., Varilo, T. & Lonnqvist, J. Regional variation in the incidence of schizophrenia in Finland: a study of birth cohorts born from 1950 to 1969. Psychol. Med. 31, 1045–1053 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Hovatta, I. et al. Schizophrenia in the genetic isolate of Finland. Am. J. Med. Genet. 74, 353–360 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Levinson, D.F. et al. Copy number variants in schizophrenia: confirmation of five previous findings and new evidence for 3q29 microdeletions and VIPR2 duplications. Am. J. Psychiatry 168, 302–316 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cooper, G.M. et al. A copy number variation morbidity map of developmental delay. Nat. Genet. 43, 838–846 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pietiläinen, O.P. et al. Phenotype mining in CNV carriers from a population cohort. Hum. Mol. Genet. 20, 2686–2695 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Laggerbauer, B., Ostareck, D., Keidel, E.M., Ostareck-Lederer, A. & Fischer, U. Evidence that fragile X mental retardation protein is a negative regulator of translation. Hum. Mol. Genet. 10, 329–338 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Darnell, J.C. et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146, 247–261 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bassell, G.J. & Warren, S.T. Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron 60, 201–214 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Linder, B. et al. Tdrd3 is a novel stress granule-associated protein interacting with the Fragile-X syndrome protein FMRP. Hum. Mol. Genet. 17, 3236–3246 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Kashima, I. et al. SMG6 interacts with the exon junction complex via two conserved EJC-binding motifs (EBMs) required for nonsense-mediated mRNA decay. Genes Dev. 24, 2440–2450 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu, B. et al. De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia. Nat. Genet. 44, 1365–1369 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. O'Roak, B.J. et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485, 246–250 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tan, T.Y. et al. Phenotypic variability of distal 22q11.2 copy number abnormalities. Am. J. Med. Genet. A 155, 1623–1633 (2011).

    Article  CAS  Google Scholar 

  19. Vartiainen, E. et al. Thirty-five-year trends in cardiovascular risk factors in Finland. Int. J. Epidemiol. 39, 504–518 (2010).

    Article  PubMed  Google Scholar 

  20. Barker, D.J., Osmond, C., Forsen, T.J., Kajantie, E. & Eriksson, J.G. Trajectories of growth among children who have coronary events as adults. N. Engl. J. Med. 353, 1802–1809 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Ben-Shachar, S. et al. 22q11.2 distal deletion: a recurrent genomic disorder distinct from DiGeorge syndrome and velocardiofacial syndrome. Am. J. Hum. Genet. 82, 214–221 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Karayiorgou, M., Simon, T.J. & Gogos, J.A. 22q11.2 microdeletions: linking DNA structural variation to brain dysfunction and schizophrenia. Nat. Rev. Neurosci. 11, 402–416 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 455, 237–241 (2008).

  24. Kobrynski, L.J. & Sullivan, K.E. Velocardiofacial syndrome, DiGeorge syndrome: the chromosome 22q11.2 deletion syndromes. Lancet 370, 1443–1452 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Tuulio-Henriksson, A., Partonen, T., Suvisaari, J., Haukka, J. & Lonnqvist, J. Age at onset and cognitive functioning in schizophrenia. Br. J. Psychiatry 185, 215–219 (2004).

    Article  PubMed  Google Scholar 

  26. Bergen, S.E. et al. Genome-wide association study in a Swedish population yields support for greater CNV and MHC involvement in schizophrenia compared with bipolar disorder. Mol. Psychiatry 17, 880–886 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Toulopoulou, T. et al. Impaired intellect and memory: a missing link between genetic risk and schizophrenia? Arch. Gen. Psychiatry 67, 905–913 (2010).

    Article  PubMed  Google Scholar 

  28. Fridell, R.A., Benson, R.E., Hua, J., Bogerd, H.P. & Cullen, B.R. A nuclear role for the Fragile X mental retardation protein. EMBO J. 15, 5408–5414 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Buchan, J.R. & Parker, R. Eukaryotic stress granules: the ins and outs of translation. Mol. Cell 36, 932–941 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Viard, T. & de la Tour, C.B. Type IA topoisomerases: a simple puzzle? Biochimie 89, 456–467 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Siomi, M.C., Zhang, Y., Siomi, H. & Dreyfuss, G. Specific sequences in the fragile X syndrome protein FMR1 and the FXR proteins mediate their binding to 60S ribosomal subunits and the interactions among them. Mol. Cell Biol. 16, 3825–3832 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Maquat, L.E., Tarn, W.Y. & Isken, O. The pioneer round of translation: features and functions. Cell 142, 368–374 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang, Y. et al. TDRD3 is an effector molecule for arginine-methylated histone marks. Mol. Cell 40, 1016–1023 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sims, R.J. III et al. The C-terminal domain of RNA polymerase II is modified by site-specific methylation. Science 332, 99–103 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yu, M.C. The role of protein arginine methylation in mRNP dynamics. Mol. Biol. Int. 2011, 163827 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Imoto, I. et al. Frequent silencing of the candidate tumor suppressor PCDH20 by epigenetic mechanism in non-small-cell lung cancers. Cancer Res. 66, 4617–4626 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Palotie, A., Widen, E. & Ripatti, S. From genetic discovery to future personalized health research. N. Biotechnol. 30, 291–295 (2012).

    Article  PubMed  CAS  Google Scholar 

  38. Mathieson, I. & McVean, G. Differential confounding of rare and common variants in spatially structured populations. Nat. Genet. 44, 243–246 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sabatti, C. et al. Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nat. Genet. 41, 35–46 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Listgarten, J., Lippert, C. & Heckerman, D. FaST-LMM-Select for addressing confounding from spatial structure and rare variants. Nat. Genet. 45, 470–471 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Xu, D. et al. Top3B is an RNA topoisomerase that works with Fragile X syndrome protein to promote synapse formation. Nat. Neurosci. advance online publication, 10.1038/nn.3479 (4 August 2013).

  42. Ascano, M. Jr. et al. FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature 492, 382–386 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ma, X.M., Yoon, S.O., Richardson, C.J., Julich, K. & Blenis, J. SKAR links pre-mRNA splicing to mTOR/S6K1-mediated enhanced translation efficiency of spliced mRNAs. Cell 133, 303–313 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Bhakar, A.L., Dolen, G. & Bear, M.F. The pathophysiology of fragile X (and what it teaches us about synapses). Annu. Rev. Neurosci. 35, 417–443 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Raynard, S., Bussen, W. & Sung, P. A double Holliday junction dissolvasome comprising BLM, topoisomerase IIIalpha, and BLAP75. J. Biol. Chem. 281, 13861–13864 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Wechsler, T., Newman, S. & West, S.C. Aberrant chromosome morphology in human cells defective for Holliday junction resolution. Nature 471, 642–646 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Darnell, J.C. et al. Kissing complex RNAs mediate interaction between the Fragile-X mental retardation protein KH2 domain and brain polyribosomes. Genes Dev. 19, 903–918 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kolb, F.A. et al. Progression of a loop-loop complex to a four-way junction is crucial for the activity of a regulatory antisense RNA. EMBO J. 19, 5905–5915 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Barch, D.M. The cognitive neuroscience of schizophrenia. Annu. Rev. Clin. Psychol. 1, 321–353 (2005).

    Article  PubMed  Google Scholar 

  50. Hooper, S.R. et al. Executive functions in young males with fragile X syndrome in comparison to mental age-matched controls: baseline findings from a longitudinal study. Neuropsychology 22, 36–47 (2008).

    Article  PubMed  Google Scholar 

  51. The Social Insurance Institution of Finland. Official Statistics of Finland, 2011 <http://www.kela.fi/web/en/statistical-publications_statistical-yearbook> (2011).

  52. Jaaskelainen, A. et al. Intergenerational transmission of overweight among Finnish adolescents and their parents: a 16-year follow-up study. Int. J. Obes. (Lond) 35, 1289–1294 (2005).

    Article  Google Scholar 

  53. Kristiansson, K. et al. Genome-wide screen for metabolic syndrome susceptibility Loci reveals strong lipid gene contribution but no evidence for common genetic basis for clustering of metabolic syndrome traits. Circulation 5, 242–249 (2012).

    PubMed  Google Scholar 

  54. Stefansson, H. et al. Large recurrent microdeletions associated with schizophrenia. Nature 455, 232–236 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Smith, E.N. et al. Longitudinal genome-wide association of cardiovascular disease risk factors in the Bogalusa heart study. PLoS Genet. 6, e1001094 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Jelenkovic, A. et al. Genetic and environmental influences on growth from late childhood to adulthood: a longitudinal study of two Finnish twin cohorts. Am. J. Hum. Biol. 23, 764–773 (2011).

    Article  PubMed  Google Scholar 

  57. Inouye, M. et al. An immune response network associated with blood lipid levels. PLoS Genet. 6, e1001113 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Colella, S. et al. QuantiSNP: an Objective Bayes Hidden-Markov Model to detect and accurately map copy number variation using SNP genotyping data. Nucleic Acids Res. 35, 2013–2025 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, K. et al. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res. 17, 1665–1674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Huang, D.W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Durbin for providing genotype data from the 173 individuals who constitute the sub-isolate population sample, C. Sabatti for helpful suggestions, and B. Laggerbauer and A. Hirmer for critically reading the manuscript. This work was supported by The Wellcome Trust (grant numbers WT089062 and WT098051 to A.P.), the Academy of Finland (project grants 200923 and 251704 to A.P., 136635 to V.S., 128504 to W.H., and 132071 to M.I.), the Academy of Finland Center of Excellence in Complex Disease Genetics (grant numbers 213506 and 129680 to A.P. and J.K.), the EuroHead project (LSM-CT- 2004-504837), the European Community's Seventh Framework Programme (FP7/2007-2013), the ENGAGE Consortium (grant agreement HEALTH-F4-2007-201413), EU/SYNSYS-Synaptic Systems (grant number 242167 to A.P.), the National Alliance for Research in Schizophrenia and Depression, Sigrid Juselius Foundation (to J.L. and A.P.), the Biomedicum Helsinki Foundation (to O.P.H.P.), the Jalmari and Rauha Ahokas Foundation (to O.P.H.P.), the Päivikki and Sakari Sohlberg Foundation (to A.P.), the Orion Farmos Research Foundation (to W.H.), grants RL1MH083268 and P30NS062691 from the US National Institutes of Health (to N.B.F.), and grants of the RVZ-network and the DFG (FOR 855) to U.F.

Author information

Authors and Affiliations

Authors

Contributions

G.S., O.P.H.P., B.L., J.S., O.P., H.S., L.P., J.L., M.J.D., U.F., N.B.F. and A.P. participated in the study design and designed experiments. O.P.H.P., B.L., G.S., J.S., W.H., V.L., K.K., M.T., M.H., H.S., M.J.D., N.B.F., A.P., C.B., O.P., S.R., S.A.-M., K.R. and J.T. participated in data analysis and performed the experiments. O.P.H.P., J.S., M.J.D., N.B.F., A.P., G.S., B.L. and U.F. wrote the manuscript. All of the authors commented on the manuscript. J.S., A.T.-H., T.V., M.I., J.K., J.G.E., O.T.R., T.L., M.-R.J., V.S., P.F.S., T.P. and J.L. contributed to the collection of case and/or control samples.

Corresponding authors

Correspondence to Utz Fischer or Nelson B Freimer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–3 and Supplementary Figures 1–9 (PDF 2266 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoll, G., Pietiläinen, O., Linder, B. et al. Deletion of TOP3β, a component of FMRP-containing mRNPs, contributes to neurodevelopmental disorders. Nat Neurosci 16, 1228–1237 (2013). https://doi.org/10.1038/nn.3484

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3484

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing