[go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spatially resolved ultrafast magnetic dynamics initiated at a complex oxide heterointerface

Abstract

Static strain in complex oxide heterostructures1,2 has been extensively used to engineer electronic and magnetic properties at equilibrium3. In the same spirit, deformations of the crystal lattice with light may be used to achieve functional control across heterointerfaces dynamically4. Here, by exciting large-amplitude infrared-active vibrations in a LaAlO3 substrate we induce magnetic order melting in a NdNiO3 film across a heterointerface. Femtosecond resonant soft X-ray diffraction is used to determine the spatiotemporal evolution of the magnetic disordering. We observe a magnetic melt front that propagates from the substrate interface into the film, at a speed that suggests electronically driven motion. Light control and ultrafast phase front propagation at heterointerfaces may lead to new opportunities in optomagnetism, for example by driving domain wall motion to transport information across suitably designed devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magnetic ordering in NdNiO3 and the vibrationally induced phase transition.
Figure 2: Temporal evolution of the antiferromagnetic order in reciprocal space.
Figure 3: Real-space dynamics of the antiferromagnetic order.
Figure 4: Recovery dynamics of the antiferromagnetic order.
Figure 5: Magnetization dynamics following Ni charge transfer excitation at 800 nm.

Similar content being viewed by others

References

  1. Haeni, J. H. et al. Room-temperature ferroelectricity in strained SrTiO3 . Nature 430, 758–761 (2004).

    Article  CAS  Google Scholar 

  2. Lee, J. H. et al. A strong ferroelectric ferromagnet created by means of spin–lattice coupling. Nature 466, 954–958 (2010).

    Article  CAS  Google Scholar 

  3. Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nature Mater. 11, 103–113 (2012).

    Article  CAS  Google Scholar 

  4. Caviglia, A. D. et al. Ultrafast strain engineering in complex oxide heterostructures. Phys. Rev. Lett. 108, 136801 (2012).

    Article  CAS  Google Scholar 

  5. Tomioka, Y., Asamitsu, A., Kuwahara, H., Moritomo, Y. & Tokura, Y. Magnetic-field-induced metal–insulator phenomena in Pr1−xCaxMnO3 with controlled charge-ordering instability. Phys. Rev. B 53, R1689–R1692 (1996).

    Article  CAS  Google Scholar 

  6. Asamitsu, A., Tomioka, Y., Kuwahara, H. & Tokura, Y. Current switching of resistive states in magnetoresistive manganites. Nature 388, 50–52 (1997).

    Article  CAS  Google Scholar 

  7. Hwang, H. Y., Cheong, S.-W., Radaelli, P. G., Marezio, M. & Batlogg, B. Lattice effects on the magnetoresistance in doped LaMnO3 . Phys. Rev. Lett. 75, 914–917 (1995).

    Article  CAS  Google Scholar 

  8. Canfield, P. C., Thompson, J. D., Cheong, S.-W. & Rupp, L. W. Extraordinary pressure dependence of the metal-to-insulator transition in the charge-transfer compounds NdNiO3 and PrNiO3 . Phys. Rev. B 47, 12357–12360 (1993).

    Article  CAS  Google Scholar 

  9. Miyano, K., Tanaka, T., Tomioka, Y. & Tokura, Y. Photoinduced insulator-to-metal transition in a perovskite manganite. Phys. Rev. Lett. 78, 4257–4260 (1997).

    Article  CAS  Google Scholar 

  10. Cavalleri, A. et al. Femtosecond structural dynamics in VO2 during an ultrafast solid–solid phase transition. Phys. Rev. Lett. 87, 237401 (2001).

    Article  CAS  Google Scholar 

  11. Perfetti, L. et al. Time evolution of the electronic structure of 1T-TaS2 through the insulator–metal transition. Phys. Rev. Lett. 97, 067402 (2006).

    Article  CAS  Google Scholar 

  12. Johnson, S. L. et al. Femtosecond dynamics of the collinear-to-spiral antiferromagnetic phase transition in CuO. Phys. Rev. Lett. 108, 037203 (2012).

    Article  CAS  Google Scholar 

  13. Rini, M. et al. Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 449, 72–74 (2007).

    Article  CAS  Google Scholar 

  14. Först, M. et al. Driving magnetic order in a manganite by ultrafast lattice excitation. Phys. Rev. B 84, 241104R (2011).

    Article  Google Scholar 

  15. Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).

    Article  CAS  Google Scholar 

  16. Hu, W. et al. Optically enhanced coherent transport in YBa2Cu3O6.5 by ultrafast redistribution of interlayer coupling. Nature Mater. 13, 705–711 (2014).

    Article  CAS  Google Scholar 

  17. Dienst, A. et al. Bi-directional ultrafast electric-field gating of interlayer charge transport in a cuprate superconductor. Nature Photon. 5, 485–488 (2011).

    Article  CAS  Google Scholar 

  18. Kampfrath, T. et al. Coherent terahertz control of antiferromagnetic spin waves. Nature Photon. 5, 31–34 (2011).

    Article  CAS  Google Scholar 

  19. Liu, M. K. et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487, 345–348 (2012).

    Article  CAS  Google Scholar 

  20. Catalan, G. Progress in perovskite nickelate research. Phase Transit. 81, 729–749 (2008).

    Article  CAS  Google Scholar 

  21. Catalan, G., Bowman, R. M. & Gregg, J. M. Metal–insulator transitions in NdNiO3 thin films. Phys. Rev. B 62, 7892–7900 (2000).

    Article  CAS  Google Scholar 

  22. Scagnoli, V. et al. Induced noncollinear magnetic order of Nd3+ in NdNiO3 observed by resonant soft x-ray diffraction. Phys. Rev. B 77, 115138 (2008).

    Article  Google Scholar 

  23. Caviglia, A. D. et al. Photoinduced melting of magnetic order in the correlated electron insulator NdNiO3 . Phys. Rev. B 88, 220401 (2013).

    Article  Google Scholar 

  24. Ruello, P., Zhang, S., Laffez, P., Perrin, B. & Gusev, V. Laser-induced coherent acoustical phonons mechanisms in the metal–insulator transition compound NdNiO3: Thermal and nonthermal processes. Phys. Rev. B 79, 094303 (2009).

    Article  Google Scholar 

  25. Sokolowski-Tinten, K., Bialkowski, J., Boing, M., Cavalleri, A. & von der Linde, D. Thermal and non-thermal melting of gallium arsenide after femtosecond laser excitation. Phys. Rev. B 58, R11805–R11808 (1998).

    Article  CAS  Google Scholar 

  26. Först, M. et al. Nonlinear phononics as an ultrafast route to lattice control. Nature Phys. 7, 854–856 (2011).

    Article  Google Scholar 

  27. Först, M. et al. Displacive lattice excitation through nonlinear phononics viewed by femtosecond X-ray diffraction. Solid State Commun. 169, 24–27 (2013).

    Article  Google Scholar 

  28. Subedi, A., Cavalleri, A. & Georges, A. Theory of nonlinear phononics for coherent light control of solids. Phys. Rev. B 89, 220301 (2014).

    Article  Google Scholar 

  29. He, J., Borisevich, A., Kalinin, S. V., Pennycook, S. J. & Pantelidis, S. T. Control of octahedral tilts and magnetic properties of perovskite oxide heterostructures by substrate symmetry. Phys. Rev. Lett. 105, 227203 (2010).

    Article  Google Scholar 

  30. Brinkman, W. F. & Rice, T. M. Single-particle excitations in magnetic insulators. Phys. Rev. B 2, 1324–1338 (1970).

    Article  Google Scholar 

  31. Buleavskii, L. N., Nagaev, E. L. & Khomskii, D. I. A new type of auto-localized state of a conduction electron in an antiferromagnetic semiconductor. Sov. Phys. JETP 27, 836–838 (1968).

    Google Scholar 

  32. Parkin, S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

    Article  CAS  Google Scholar 

  33. Scherwitzl, R. et al. Electric-field control of the metal–insulator transition in ultrathin NdNiO3 films. Adv. Mater. 22, 5517–5520 (2010).

    Article  CAS  Google Scholar 

  34. Schlotter, W. F. et al. The soft x-ray instrument for materials studies at the linac coherent light source x-ray free-electron laser. Rev. Sci. Instrum. 83, 043107 (2012).

    Article  CAS  Google Scholar 

  35. Doering, D. et al. Development of a compact fast CCD camera and resonant soft x-ray scattering endstation for time-resolved pump–probe experiments. Rev. Sci. Instrum. 82, 073303 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Frano for helpful discussions. Portions of this research were carried out on the SXR Instrument at the Linac Coherent Light Source (LCLS), a division of SLAC National Accelerator Laboratory and an Office of Science user facility operated by Stanford University for the US Department of Energy. The SXR Instrument is financially supported by a consortium whose membership includes the LCLS, Stanford University through the Stanford Institute for Materials Energy Sciences (SIMES), Lawrence Berkeley National Laboratory (LBNL, contract No. DE-AC02-05CH11231), University of Hamburg through the BMBF priority program FSP 301, and the Center for Free Electron Laser Science (CFEL). The research leading to these results has received financial support from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement no. 319286 (Q-MAC) and no. 281403 (FEMTOSPIN). Work performed at SIMES was further supported by US Department of Energy, Office of Basic Energy Science, Division of Materials Science and Engineering, under Contract No. DE-AC02-76SF00515. Work at Brookhaven National Laboratory was financially supported by the Department of Energy, Division of Materials Science and Engineering, under contract No. DE-AC02-98CH10886.

Author information

Authors and Affiliations

Authors

Contributions

A.D.C., M.F. and A.C. conceived this project. M.F., A.D.C., R.M., V.K., S.B.W., S.S.D. and J.P.H. performed the experiment at the LCLS, supported by W.F.S., J.J.T. and G.L.D. (beamline), M.P.M. and J.R. (laser), Y.-D.C. and W.S.L. (experimental endstation). The sample was grown by R.S., P.Z. and J.-M.T. M.F. and A.D.C. analysed the data with help from H.B. S.R.C. and D.J. provided the model Hamiltonian theory. M.F., A.D.C. and A.C. wrote the manuscript, with feedback from all co-authors.

Corresponding author

Correspondence to M. Först.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1529 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Först, M., Caviglia, A., Scherwitzl, R. et al. Spatially resolved ultrafast magnetic dynamics initiated at a complex oxide heterointerface. Nature Mater 14, 883–888 (2015). https://doi.org/10.1038/nmat4341

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4341

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing