Abstract
Coastal marshes are considered to be among the most valuable and vulnerable ecosystems on Earth, where the imminent loss of ecosystem services is a feared consequence of sea level rise. However, we show with a meta-analysis that global measurements of marsh elevation change indicate that marshes are generally building at rates similar to or exceeding historical sea level rise, and that process-based models predict survival under a wide range of future sea level scenarios. We argue that marsh vulnerability tends to be overstated because assessment methods often fail to consider biophysical feedback processes known to accelerate soil building with sea level rise, and the potential for marshes to migrate inland.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
DeLaune, R. D., Patrick, H. H. & Buresh, R. J. Sedimentation rates determined by 137Cs dating in a rapidly accreting salt marsh. Nature 275, 532–533 (1978).
Stevenson, J. C., Ward, L. G. & Kearney, M. S. in Estuarine Variability (ed. Wolfe, D. A.) 241–259 (Academic, 1986).
Day, J. W. Jr & Templet, P. H. Consequences of sea level rise: implications from the Mississippi Delta. Coast. Manage. 17, 241–257 (1989).
Reed, D. J. The response of coastal marshes to sea-level rise: Survival or submergence? Earth Surf. Proc. Land. 20, 39–48 (1995).
Fitzgerald, D. M., Fenster, M. S. Argow, B. A. & Buynevich, I. V. Coastal impacts due to sea-level rise. Annu. Rev. Earth Planet. Sci. 36, 601–47 (2008).
Kirwan, M. L. & Megonigal, J. P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504, 53–60 (2013).
Kearney, M. S., Rogers, A. S., Townsend, G., Rizzo, E. & Stutzer, D. Landsat imagery shows decline of coastal marshes in Chesapeake and Delaware Bays. Eos 83, 173–178 (2002).
Carniello, L., Defina, A. & D'Alpaos, L. Morphological evolution of the Venice lagoon: evidence from the past and trend for the future. J. Geophys. Res. Earth Surf. 114, 1–10 (2009).
Murray, N. J. et al. Tracking the rapid loss of tidal wetlands in the Yellow Sea. Front. Ecol. Environ. 12, 267–272 (2014).
Ma, Z. J. et al. Ecosystems management: rethinking China's new great wall. Science 346, 912–914 (2014).
McFadden, L., Spencer, T. & Nicholls, R. J. Broad-scale modeling of coastal wetlands: what is required? Hydrobiologia 577, 5–15 (2007).
Nicholls, R. J. et al. in Climate Change 2007: Impacts, Adaptation and Vulnerability (eds Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J. & Hanson, C. E.) 315–356 (IPCC, Cambridge Univ. Press, 2007).
Reed, D. J. et al. in Background Documents Supporting Climate Change Science Program Synthesis and Assessment Product (eds Titus, J. G. & Strange, E. M.) 134–186 (US EPA, 2008).
Craft, C. et al. Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Front. Ecol. Environ. 7, 73–78 (2009).
Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).
Ouyang, X. & Lee, S. Y. Updated estimates of carbon accumulation rates in coastal marsh sediments. Biogeosciences 11, 5057–5071 (2014).
Temmerman, S. et al. Ecosystem-based coastal defence in the face of global change. Nature 504, 79–83. (2013).
Moller, I. et al. Wave attenuation over coastal salt marshes under storm surge conditions. Nature Geosci. 7, 727–731 (2014).
Hopkinson, C. S., Cai, W. & Hu, X. Carbon sequestration in wetland dominated coastal systems — a global sink of rapidly diminishing magnitude. Curr. Opin. Environ. Sustain. 4, 186–194 (2012).
Torio, D. D. & Chmura, G. L. Assessing coastal squeeze of tidal wetlands. J. Coast. Res. 29, 1049–1061 (2013).
Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).
Cahoon, D. R. & Reed, D. J. Relationships among marsh surface topography, hydroperiod, and soil accretion in a deteriorating Louisiana salt marsh. J. Coast. Res. 11, 357–369 (1995).
Leonard, L. A. Controls on sediment transport and deposition in an incised mainland marsh basin, southeastern North Carolina. Wetlands 17, 263–274 (1997).
Christiansen, T., Wiberg, P. L. & Milligan, T. G. Flow and sediment transport on a tidal salt marsh surface. Estuar. Coast. Shelf Sci. 50, 315–331 (2000).
Friedrichs, C. T. & Perry, J. E. Tidal salt marsh morphodynamics. J. Coastal Res. 27, 6–36 (2001).
Hill, T. D. & Anisfeld, S. C. Coastal wetland response to sea level rise in Connecticut and New York. Estuarine. Coast. Shelf Sci. 163, 185–193 (2015).
Kolker, A. S., Kirwan, M. L., Goodbred, S. L. & Cochran, J. K. Global climate changes recorded in coastal wetland sediments: empirical observation linked to theoretical predictions. Geophys. Res. Lett. 37, L14706 (2010).
Vandenbruwaene, W. et al. Sedimentation and response to sea-level rise of a restored marsh with reduced tidal exchange: comparison with a natural tidal marsh. Geomorphology 130, 115–126 (2011).
Cadol, D. et al. Elevation-dependent surface elevation gain in a tidal freshwater marsh and implications for marsh persistence. Limnol. Oceanogr. 59, 1065–1080 (2014).
Smith, J. A. The role of phragmites australis in mediating inland salt marsh migration in a mid-Atlantic estuary. PLoS ONE 8, e65091 (2013).
Morris, J. T., Sundareshwar, P. V., Nietch, C. T., Kjerfve, B. & Cahoon, D. R. Responses of coastal wetlands to rising sea level. Ecology 83, 2869–2877 (2002).
Kirwan, M. L. & Guntenspergen, G. R. Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh. J. Ecol. 100, 764–770 (2012).
Nyman, J. A., Walters, R. J., Delaune, R. D. & Patrick, W. H. Marsh vertical accretion via vegetative growth. Estuar. Coast. Shelf Sci. 69, 370–380 (2006).
Langley, J. A., McKee, K. L., Cahoon, D. R., Cherry, J. A. & Megonigal, J. P. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise. Proc. Natl Acad. Sci. USA 106, 6182–6186 (2009).
Mudd, S. M., D'Alpaos, A. & Morris, J. T. How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation. J. Geophys. Res. 115, F03029 (2010).
Temmerman, S., Moonen, P., Schoelynck, J., Govers, G. & Bouma, T. J. Impact of vegetation die-off on spatial flow patterns over a tidal marsh. Geophys. Res. Lett. 39, L03406 (2012).
Yang, S. L., Shi, B. W., Bouma, T. J., Ysebaert, T. & Luo, X. X. Wave attenuation at a salt marsh margin: a case study of an exposed coast on the Yangtze estuary. Estuar. Coasts 35, 169–182 (2012).
Baustian, J. J., Mendelssohn, I. A. & Hester, M. W. Vegetation's importance in regulating surface elevation in a coastal salt marsh facing elevated rates of sea level rise. Glob. Change Biol. 18, 3377–3382 (2012).
Van de Koppel, J., Van der Wal, D., Bakker, J. P. & Herman, P. M. J. Self-organization and vegetation collapse in salt marsh ecosystems. Am. Nat. 165, E1–E12 (2005).
Marani, M., D'Alpaos, A., Lanzoni, S., Carniello, L. & Rinaldo, A. Biologically controlled multiple equilibria of tidal landforms and the fate of the Venice lagoon. Geophys. Res. Lett. 34, L11402 (2007).
Kirwan, M. L. et al. Limits on the adaptability of coastal marshes to rising sea level. Geophys. Res. Lett. 37, L23401 (2010).
Wang, C. & Temmerman, S. Does biogeomorphic feedback lead to abrupt shifts between alternative landscape states? An empirical study on intertidal flats and marshes. J. Geophys. Res. 118, 229–240 (2013).
Marani, M., Da Lio, C. & D'Alpaos, A. Vegetation engineers marsh morphology through multiple competing stable states. Proc. Natl Acad. Sci. USA 110, 3259–3263 (2013).
Mariotti, G. & Fagherazzi, S. Critical width of tidal flats triggers marsh collapse in the absence of sea-level rise. Proc. Natl Acad. Sci. USA 110, 5353–5356 (2013).
Dahl, T. E. & Stedman, S. M. Status and Trends of Wetlands in the Coastal Watersheds of the Conterminous United States 2004 to 2009. (US Department of the Interior, Fish and Wildlife Service, and US National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 2013).
Cahoon, D. R. et al. in Wetlands and Natural Resource Management: Ecological Studies (eds Verhoeven, J. T. A., Beltman, B., Bobbink, R. & Whigham, D.) 271–292 (Springer, 2006).
French, J. Tidal marsh sedimentation and resilience to environmental change: Exploratory modelling of tidal, sea-level and sediment supply forcing in predominantly allochthonous systems. Mar. Geol. 235, 119–136 (2006).
Syvitski, J. P. et al. Sinking deltas due to human activities. Nature Geosci. 2, 681–686 (2009).
Church, J. A. & White, N. J. A 20th century acceleration in global sea-level rise. Geophys. Res. Lett. 33, L01602 (2006).
Kemp, A. C. et al. Climate related sea-level variations over the past two millennia. Proc. Natl Acad. Sci. USA 108, 11017–11022 (2011).
Engelhart, S. E. & Horton, B. P. Holocene sea level database for the Atlantic coast of the United States. Quat. Sci. Rev. 54, 12–25 (2012).
Donnelly, J. P. & Bertness, M. D. Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise. Proc. Natl Acad. Sci. USA 98, 14218–14223 (2001).
NOAA. Sea Level Trends (2014); http://tidesandcurrents.noaa.gov/sltrends/sltrends.html
Chmura, G. L. & Hung, G. A. Controls on salt marsh accretion: a test in salt marshes of Eastern Canada. Estuaries 27, 70–81 (2004).
Redfield, A. C. Development of a New England salt marsh. Ecol. Monogr. 42, 201–237 10.2307/1942263 (1972).
Webb, E. L. et al. A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise. Nature Clim. Change 3, 458–465 (2013).
Stralberg, D. M. et al. Evaluating tidal marsh sustainability in the face of sea-level rise: a hybrid modeling approach applied to San Francisco Bay. PLoS ONE 6, e27388 (2011).
Rogers, K., Saintilan, N. & Copeland, C. Modelling wetland surface elevation dynamics and its application to forecasting the effects of sea-level rise on estuarine wetlands. Ecol. Model. 244, 148–157 (2012).
Swanson, K. M. et al. Wetland accretion rate model of ecosystem resilience (WARMER) and its application to habitat sustainability for endangered species in the San Francisco estuary. Estuar. Coasts 37, 476–492 (2014).
Schile, L. M. et al. Modeling tidal marsh distribution with sea-level rise: Evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency. PLoS ONE 9, e88760 (2014).
Cooper, M. J. P. et al. The potential impacts of sea level rise on the coastal region of New Jersey, USA. Clim. Change 90, 475–492 (2008).
Tian, B., Zhang, L., Wang, X., Zhou, Y. & Zhang, W. Forecasting the effects of sea-level rise at Chongming Dongtan Nature Reserve in the Yangtze Delta, Shanghai, China. Ecol. Engin. 36, 1383–1388 (2010).
Moeslund, J. E. et al. Geographically comprehensive assessment of salt-meadow vegetation-elevation relations using LiDAR. Wetlands 31, 471–482 (2011).
Blankespoor, B., Dagupta, S. & Laplante, B. Sea-level rise and coastal wetlands. Ambio 43, 996–1005 (2014).
Glick, P., Clough, J. & Nunley, B. Sea-level Rise and Coastal Habitats in the Chesapeake Bay Region (National Wildlife Federation, 2008).
Traill, L. W. et al. Managing for change: wetland transitions under sea-level rise and outcomes for threatened species. Divers. Distrib. 17, 1225–1233 (2011).
Glick, P., Clough, J., Polaczyk, A., Couvillion, B. & Nunley, B. Potential effects of sea-level rise on coastal wetlands in southeastern Louisiana. J. Coast. Res. 63, 211–233 (2013).
Wang, H., Ge, Z., Yuan, Y. & Zhang, L. Evaluation of the combined threat from sea-level rise and sedimentation reduction to the coastal wetlands in the Yangtze Estuary, China. Ecol. Engin. 71, 346–354 (2014).
Warren Pinnacle Consulting, Inc. Application of Sea-Level Affecting Marshes Model (SLAMM) to Long Island, NY and New York City Report no. 14-29 (New York State Energy Research and Development Authority, 2014); https://www.nyserda.ny.gov/-/media/Files/Publications/Research/Environmental/SLAMM%20report.pdf
US Fish and Wildlife Service. Rising to the Urgent Challenge: Strategic Plan for Responding to Accelerating Climate Change Technical Report (2010).
U. S. Fish and Wildlife Service. Application of the Sea-Level Affecting Marshes Model (SLAMM 6) to Swanquarter NWR Technical Report (2012).
Poulter, B. Interactions between landscape disturbance and gradual environmental change: plant community migration in response to fire and sea level rise. PhD thesis, Duke Univ. (2005).
Kirwan, M. L. & Guntenspergen, G. R. Accelerated sea-level rise—a response to Craft et al. Front. Ecol. Environ. 7, 126–127 (2009).
Fagherazzi, S. et al. Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors. Rev. Geophys. 50, 1–28 (2012).
D'Alpaos, A., Lanzoni, S., Marani, M. & Rinaldo, A. Landscape evolution in tidal embayments: modeling the interplay of erosion sedimentation and vegetation dynamics. J. Geophys. Res. 112, F01008 (2007).
Schuerch, M., Vafeidis, A., Slawig, T. & Temmerman, S. Modeling the influence of changing storm patterns on the ability of a salt marsh to keep pace with sea level rise. J. Geophys. Res. 118, 84–96 (2013).
Church, J. A. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1137–1216 (Cambridge Univ. Press, 2013).
Rahmstorf, S. A semi-empirical approach to projecting future sea-level rise. Science 315, 368–370 (2007).
Peters, G. P. et al. The challenge to keep global warming below 2 °C. Nature Clim. Change 3, 4–6 (2013).
Rahmstorf, S., Foster, G. & Cazenave, A. Comparing climate projections to observations up to 2011. Environ. Res. Lett. 7, 044035 (2012).
Knutson, T. R. et al. Tropical cyclones and climate change. Nature Geosci. 3, 157–163 (2010).
Turner, R. E., Baustian, J. J., Swenson, E. M. & Spicer, J. S. Wetland sedimentation from hurricanes Katrina and Rita. Science 314, 449–452 (2006).
Mariotti, G. & Carr, J. Dual role of salt marsh retreat: long-term loss and short-term resilience. Water Resour. Res. 50, 2963–2974 (2014).
Syvitski, J. P., Vörösmarty, C. J., Kettner, A. J. & Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308, 376–380 (2005).
Weston, N. B. Declining sediments and rising seas: an unfortunate convergence for tidal wetlands. Estuar. Coasts 37, 1–23 (2014).
Gunnell, J. R., Rodriguez, A. B. & McKee, B. A. How a marsh is built from the bottom up. Geology 41, 859–862 (2013).
Williams, K. et al. Sea-level rise and coastal forest retreat on the west coast of Florida, USA. Ecology 80, 2045–2063 (1999).
Kirwan, M. L., Kirwan, J. L. & Copenheaver, C. A. Dynamics of an estuarine forest and its response to rising sea level. J. Coastal Res. 23, 457–463 (2007).
Doyle, T. W. et al. Predicting the retreat and migration of tidal forests along the northern Gulf of Mexico under sea-level rise. Forest Ecol. Manag. 259, 770–777 (2010).
Raabe, E. A. & Stumpf, R. P. Expansion of tidal marsh in response to sea-level rise: Gulf Coast of Florida, USA. Estuar. Coasts. 39, 145–157 (2016).
Hussein, A. H. Modeling of sea-level rise and deforestation in submerging coastal ultisols of Chesapeake Bay. Soil Sci. Soc. Am. J. 73, 185–196 (2009).
Fagherazzi, S. The ephemeral life of a salt marsh. Geology 41, 943–944 (2013).
Walters, D. C. & Kirwan, M. L. 2015. Sea level drives marsh expansion into upland areas. Coastal and Estuarine Research Federation Biennial Meeting, abstr. 0480–001150 (2015).
Feagin, R. A., Martinez, M. L., Mendoza-Gonzalez, G. & Costanza, R. Salt marsh zonal migration and ecosystem service change in response to global sea level rise: a case study from an urban region. Ecology Society 15, 14 (2010).
Morris, J. T., Edwards, J., Crooks, S. & Reyes, E. in Recarbonization of the biosphere: Ecosystems and the Global Carbon Cycle (eds Lal, R. et al.) 517–531 (Springer, 2012).
Center for Coastal Resource Management. The Chesapeake Bay Shoreline Inventory (2014); http://ccrm.vims.edu/gis_data_maps/shoreline_inventories/index.html
Wolters, M., Garbutt, A. & Bakker, J. P. Salt-marsh restoration: evaluating the success of de-embankments in north-west Europe. Biol. Conserv. 123, 249–268 (2005).
Van der Wal, D. & Pye, K. Patterns, rates and possible causes of saltmarsh erosion in the Greater Thames area (UK). Geomorphology 61, 373–391 (2004).
Van der Wal, D., Wielemaker-Van den Dool, A. & Herman, P. M. J. Spatial patterns, rates and mechanisms of saltmarsh cycles (Westerschelde, The Netherlands). Estuar. Coast. Shelf Sci. 76, 357–368 (2008).
Deegan, L. A. et al. Coastal eutrophication as a driver of salt marsh loss. Nature 490, 388–392 (2012).
Acknowledgements
We thank D. Cahoon, J. French, P. Hensel, K. McKee, D. Reed, N. Saintilan, and T. Spencer for their generosity in sharing data that contributed to Fig. 1. J. Smith provided the photograph in Fig. 4a. This work was supported financially by the US Geological Survey Climate and Land Use Change Research and Development Program (G.R.G. and M.L.K), NSF 1237733 (M.L.K and S.F), NSF 1426981 (M.L.K), NSF 1354251 (S.F.), FWO K2.174.14N (S.T.) and UA-BOF DOCPRO (S.T.). Any use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the US Government. This is contribution number 3510 of the Virginia Institute of Marine Science.
Author information
Authors and Affiliations
Contributions
M.L.K. designed the study, E.E.S. conducted the meta-analysis, and all authors wrote the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 251 kb)
Rights and permissions
About this article
Cite this article
Kirwan, M., Temmerman, S., Skeehan, E. et al. Overestimation of marsh vulnerability to sea level rise. Nature Clim Change 6, 253–260 (2016). https://doi.org/10.1038/nclimate2909
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nclimate2909
This article is cited by
-
Rapid sea level rise causes loss of seagrass meadows
Communications Earth & Environment (2024)
-
Real-world time-travel experiment shows ecosystem collapse due to anthropogenic climate change
Nature Communications (2024)
-
The impacts of climate change on coastal groundwater
Nature Reviews Earth & Environment (2024)
-
Accelerating Elevation Gain Indicates Land Loss Associated with Erosion in Mississippi River Deltaic Plain Tidal Wetlands
Estuaries and Coasts (2024)
-
Vulnerability to Sea-Level Rise Varies Among Estuaries and Habitat Types: Lessons Learned from a Network of Surface Elevation Tables in Puget Sound
Estuaries and Coasts (2024)