Abstract
Mangroves provide a wide range of ecosystem services, including nutrient cycling, soil formation, wood production, fish spawning grounds, ecotourism and carbon (C) storage1. High rates of tree and plant growth, coupled with anaerobic, water-logged soils that slow decomposition, result in large long-term C storage. Given their global significance as large sinks of C, preventing mangrove loss would be an effective climate change adaptation and mitigation strategy. It has been reported that C stocks in the Indo-Pacific region contain on average 1,023 MgC ha−1 (ref. 2). Here, we estimate that Indonesian mangrove C stocks are 1,083 ± 378 MgC ha−1. Scaled up to the country-level mangrove extent of 2.9 Mha (ref. 3), Indonesia’s mangroves contained on average 3.14 PgC. In three decades Indonesia has lost 40% of its mangroves4, mainly as a result of aquaculture development5. This has resulted in annual emissions of 0.07–0.21 Pg CO2e. Annual mangrove deforestation in Indonesia is only 6% of its total forest loss6; however, if this were halted, total emissions would be reduced by an amount equal to 10–31% of estimated annual emissions from land-use sectors at present. Conservation of carbon-rich mangroves in the Indonesian archipelago should be a high-priority component of strategies to mitigate climate change.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
The Importance of Mangroves to People: A Call to Action (UNEP, World Conservation Monitoring Centre, 2014).
Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nature Geosci. 4, 293–297 (2011).
The World’s Mangroves 1980–2005 89 (FAO Forestry Paper 153, FAO, 2007).
Digital Land Cover and Land Use Map of Indonesia for Years 2000, 2003, 2006 and 2009 (Spatial Planning Agency, Ministry of Forestry of the Republic of Indonesia, 2009).
Giri, C. et al. Mangrove forest distributions and dynamics (1975–2005) of the tsunami-affected region of Asia. J. Biogeogr. 35, 519–528 (2008).
Margono, B. A., Potapov, P. V., Turubanova, S., Stolle, F. & Hansen, M. C. Primary forest cover loss in Indonesia over 2000–2012. Nature Clim. Change 4, 730–735 (2014).
Kauffman, J. B., Heider, C., Norfolk, J. & Payton, F. Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecol. Appl. 24, 518–527 (2014).
Giri, C. et al. Status and distribution of mangrove forests of the world using Earth Observation Satellite data. Glob. Ecol. Biogeogr. 20, 154–159 (2011).
Shrimp Farms: Area and Production During 2006–2012 (Center for Statistical Data and Information, Ministry of Marine Affairs and Fishery of the Republic of Indonesia, 2013).
Export of Fishery Products (Ministry of Marine Affairs and Fishery of the Republic of Indonesia, 2014); http://statistik.kkp.go.id/index.php/statistik/c/430/0/0/0/0/Volume-dan-Nilai-Ekspor-Menurut-Komoditi-per-Provinsi-HS-2012
Ministry of Environment Republic of Indonesia Indonesia Second National Communication Under the United Nations Framework Convention on Climate Change (Ministry of Environment Republic of Indonesia, 2010).
IPCC 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (ed Hiraishi, T.et al.) (IPCC, 2014).
Mcleod, E. et al. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2 . Front. Ecol. Environ. 9, 552–560 (2011).
IPCC 2006 IPCC Guidelines for National Greenhouse Gas Inventories—Volume 4: Agriculture, Forestry and Other Land Use (AFOLU) (IPCC, 2006)
Penman, J. et al. Good Practice Guidance for Land Use, Land-Use Change and Forestry (Institute for Global Environmental Studies, 2003).
Komiyama, A., Ong, J. E. & Poungparn, S. Allometry, biomass, and productivity of mangrove forests: A review. Aquat. Bot. 89, 128–137 (2008).
Hinrichs, S., Nordhaus, I. & Geist, S. J. Status, diversity and distribution patterns of mangrove vegetation in the Segara Anakan lagoon, Java, Indonesia. Reg. Environ. Change 9, 275–289 (2009).
Murdiyarso, D., Van Noordwijk, M., Wasrin, U. R., Tomich, T. P. & Gillison, A. N. Environmental benefits and sustainable land-use options in the Jambi transect, Sumatra. J. Veg. Sci. 13, 429–438 (2002).
Kauffman, J. B., Hughes, R. F. & Heider, C. Carbon pool and biomass dynamics associated with deforestation, land use, and agricultural abandonment in the neotropics. Ecol. Appl. 19, 1211–1222 (2009).
Adame, M. F. et al. Carbon stocks of tropical coastal wetlands within the karstic landscape of the Mexican Caribbean. PLoS ONE 8, e56569 (2013).
Kauffman, J. B., Heider, C., Cole, T. G., Dwire, K. A. & Donato, D. C. Ecosystem carbon stocks of micronesian mangrove forests. Wetlands 31, 343–352 (2011).
Ministry of Forestry Republic of Indonesia Recalculation of Indonesia’s Land Cover in 2013 (Direktorat Jenderal Planologi Kehutanan, 2014) (in Indonesian)
Pendleton, L. et al. Estimating global “Blue Carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 7, e43542 (2012).
Siikamaki, J., Sanchirico, J. N. & Jardine, S. L. Global economic potential for reducing carbon dioxide emissions from mangrove loss. Proc. Natl Acad. Sci. USA 109, 14369–14374 (2012).
Global Aquaculture Production (FishStat) Dataset (Food and Agriculture Organisation, 2014)
Lebel, L. et al. Industrial transformation and shrimp aquaculture in Thailand and Vietnam: Pathways to ecological, social, and economic sustainability? Ambio 31, 311–323 (2002).
Kongkeo, H. Comparison of intensive shrimp farming systems in Indonesia, Philippines, Taiwan and Thailand. Aquac. Res. 28, 789–796 (1997).
Alongi, D. M. Carbon sequestration in mangrove forests. Carbon Manag. 3, 313–322 (2012).
Thompson, B. S., Clubbe, C. P., Primavera, J. H., Curnick, D. & Koldewey, H. J. Locally assessing the economic viability of blue carbon: A case study from Panay Island, the Philippines. Ecosyst. Serv. 8, 128–140 (2014).
Acknowledgements
This work is supported by the US Agency for International Development (USAID). D. Sheil provided useful comments on an earlier draft. We are also grateful to officials from Sembilang, Bunaken and Tanjung Puting National Parks for their assistance, without which the field work could have not been performed. We would also like to thank the many technicians, students and villagers who assisted in data collection in the field.
Author information
Authors and Affiliations
Contributions
D.M. conceived and designed the study, collected field data, performed data analyses and led the writing of the paper. J.P. collected field data, performed data analyses and contributed to writing. J.B.K. also conceived and designed the study, collected field data and contributed to analysis and writing. M.W.W. collected field data and contributed to writing. S.D.S. contributed to data collection, data analysis and writing. D.C.D. contributed to data collection and writing. S.M. collected field data and contributed to writing. H.K. collected field data and contributed to writing. S.T. collected field data and contributed to writing. S.K. contributed to data collection and writing.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Rights and permissions
About this article
Cite this article
Murdiyarso, D., Purbopuspito, J., Kauffman, J. et al. The potential of Indonesian mangrove forests for global climate change mitigation. Nature Clim Change 5, 1089–1092 (2015). https://doi.org/10.1038/nclimate2734
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nclimate2734
This article is cited by
-
Litterfall Production and Decomposition in Tropical and Subtropical Mangroves: Research Trends and Interacting Effects of Biophysical, Chemical, and Anthropogenic Factors
Wetlands (2024)
-
Deriving emission factors for mangrove blue carbon ecosystem in Indonesia
Carbon Balance and Management (2023)
-
Soil organic carbon stocks increased across the tide-induced salinity transect in restored mangrove region
Scientific Reports (2023)
-
Challenges and opportunities for achieving Sustainable Development Goals through restoration of Indonesia’s mangroves
Nature Ecology & Evolution (2023)
-
Changes in Shoreline and Its Impact on Mangrove Structure in Selected Islands of Sundarbans, Northeast Coast of India
Thalassas: An International Journal of Marine Sciences (2023)