[go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A map of the day–night contrast of the extrasolar planet HD 189733b

Abstract

‘Hot Jupiter’ extrasolar planets are expected to be tidally locked because they are close (<0.05 astronomical units, where 1 au is the average Sun–Earth distance) to their parent stars, resulting in permanent daysides and nightsides. By observing systems where the planet and star periodically eclipse each other, several groups have been able to estimate the temperatures of the daysides of these planets1,2,3. A key question is whether the atmosphere is able to transport the energy incident upon the dayside to the nightside, which will determine the temperature at different points on the planet’s surface. Here we report observations of HD 189733, the closest of these eclipsing planetary systems4,5,6, over half an orbital period, from which we can construct a ‘map’ of the distribution of temperatures. We detected the increase in brightness as the dayside of the planet rotated into view. We estimate a minimum brightness temperature of 973 ± 33 K and a maximum brightness temperature of 1,212 ± 11 K at a wavelength of 8 μm, indicating that energy from the irradiated dayside is efficiently redistributed throughout the atmosphere, in contrast to a recent claim for another hot Jupiter7. Our data indicate that the peak hemisphere-integrated brightness occurs 16 ± 6° before opposition, corresponding to a hotspot shifted east of the substellar point. The secondary eclipse (when the planet moves behind the star) occurs 120 ± 24 s later than predicted, which may indicate a slightly eccentric orbit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Observed phase variation for HD 189733b, with transit and secondary eclipse visible.
Figure 2: Time series of the transit and secondary eclipse.
Figure 3: Brightness estimates for 12 longitudinal strips on the surface of the planet.

Similar content being viewed by others

References

  1. Deming, D., Seager, S., Richardson, L. J. & Harrington, J. Infrared radiation from an extrasolar planet. Nature 434, 740–743 (2005)

    Article  ADS  CAS  Google Scholar 

  2. Charbonneau, D. et al. Detection of thermal emission from an extrasolar planet. Astrophys. J. 626, 523–529 (2005)

    Article  ADS  CAS  Google Scholar 

  3. Deming, D., Harrington, J., Seager, S. & Richardson, L. J. Strong infrared emission from the extrasolar planet HD 189733b. Astrophys. J. 644, 560–564 (2006)

    Article  ADS  CAS  Google Scholar 

  4. Bouchy, F. et al. ELODIE metallicity-biased search for transiting hot Jupiters. II. A very hot Jupiter transiting the bright K star HD 189733. Astron. Astrophys. 444, L15–L19 (2005)

    Article  ADS  CAS  Google Scholar 

  5. Bakos, G. A. et al. Refined parameters of the planet orbiting HD 189733. Astrophys. J. 650, 1160–1171 (2006)

    Article  ADS  CAS  Google Scholar 

  6. Winn, J. N. et al. The Transit Light Curve Project. V. System parameters and stellar rotation period of HD 189733. Astron. J. 133, 1828–1835 (2007)

    Article  ADS  Google Scholar 

  7. Harrington, J. et al. The phase-dependent infrared brightness of the extrasolar planet υ Andromeda b. Science 314, 623–626 (2006)

    Article  ADS  CAS  Google Scholar 

  8. Fazio, G. G. et al. The Infrared Array Camera (IRAC) for the Spitzer Space Telescope. Astrophys. J. Suppl. 154, 10–17 (2004)

    Article  ADS  Google Scholar 

  9. Werner, M. W. et al. The Spitzer Space Telescope mission. Astrophys. J. Suppl. 154, 1–9 (2004)

    Article  ADS  Google Scholar 

  10. Bakos, G. A., András, P., Latham, D. W., Noyes, R. W. & Stefanik, R. P. A stellar companion in the HD 189733 system with a known transiting extrasolar planet. Astrophys. J. 641, L57–L60 (2006)

    Article  ADS  CAS  Google Scholar 

  11. Loeb, A. A dynamical method for measuring the masses of stars with transiting planets. Astrophys. J. 623, L45–L48 (2005)

    Article  ADS  Google Scholar 

  12. Williams, P. K. G., Charbonneau, D., Cooper, C. S., Showman, A. P. & Fortney, J. J. Resolving the surfaces of extrasolar planets with secondary eclipse light curves. Astrophys. J. 649, 1020–1027 (2006)

    Article  ADS  CAS  Google Scholar 

  13. Rauscher, E. et al. Toward eclipse mapping of hot Jupiters. Preprint at 〈http://arXiv.org/astro-ph/0612412〉 (2006)

  14. Bodenheimer, P., Laughlin, G. & Lin, D. On the radii of extrasolar giant planets. Astrophys. J. 592, 555–563 (2003)

    Article  ADS  Google Scholar 

  15. Guillot, T., Burrows, A., Hubbard, W. B., Lunine, J. I. & Saumon, D. Giant planets at small orbital distances. Astrophys. J. 459, L35–L38 (1996)

    Article  ADS  CAS  Google Scholar 

  16. Showman, A. P. & Guillot, T. Atmospheric circulation and tides of “51 Pegasus b-like” planets. Astron. Astrophys. 385, 166–180 (2002)

    Article  ADS  Google Scholar 

  17. Seager, S. et al. On the dayside thermal emission of hot Jupiters. Astrophys. J. 632, 1122–1131 (2005)

    Article  ADS  CAS  Google Scholar 

  18. Iro, N., Bézard, B. & Guillot, T. A time-dependent radiative model of HD 209458b. Astron. Astrophys. 436, 719–727 (2005)

    Article  ADS  CAS  Google Scholar 

  19. Fortney, J. J., Marley, M. S., Lodders, K., Saumon, D. & Freedman, R. Comparative planetary atmospheres: models of TrES-1 and HD 209458b. Astrophys. J. 627, L69–L72 (2005)

    Article  ADS  CAS  Google Scholar 

  20. Barman, T. S., Hauschildt, P. H. & Allard, F. Phase-dependent properties of extrasolar planet atmospheres. Astrophys. J. 632, 1132–1139 (2005)

    Article  ADS  CAS  Google Scholar 

  21. Burrows, A., Sudarsky, D. & Hubeny, I. Theory for the secondary eclipse fluxes, spectra, atmospheres, and light curves of transiting extrasolar giant planets. Astrophys. J. 650, 1140–1149 (2006)

    Article  ADS  CAS  Google Scholar 

  22. Cho, J. Y.-K., Menou, K., Hansen, B. M. S. & Seager, S. The changing face of the extrasolar giant planet HD 209458b. Astrophys. J. 587, L117–L120 (2003)

    Article  ADS  Google Scholar 

  23. Burkert, A., Lin, D. N. C., Bodenheimer, P. H., Jones, C. A. & Yorke, H. W. On the surface heating of synchronously spinning short-period Jovian planets. Astrophys. J. 618, 512–523 (2005)

    Article  ADS  Google Scholar 

  24. Cooper, C. S. & Showman, A. P. Dynamic meteorology at the photosphere of HD 209458b. Astrophys. J. 629, L45–L48 (2005)

    Article  ADS  CAS  Google Scholar 

  25. Cooper, C. S. & Showman, A. P. Dynamics and disequilibrium carbon chemistry in hot Jupiter atmospheres, with application to HD 209458b. Astrophys. J. 649, 1048–1063 (2006)

    Article  ADS  CAS  Google Scholar 

  26. Langton, J. & Laughlin, G. Observational consequences of hydrodynamic flows on hot Jupiters. Astrophys. J. 657, L113–L116 (2007)

    Article  ADS  Google Scholar 

  27. Fortney, J. J., Saumon, D., Marley, M. S., Lodders, K. & Freedman, R. S. Atmosphere, interior, and evolution of the metal-rich transiting planet HD 149026b. Astrophys. J. 642, 495–504 (2006)

    Article  ADS  CAS  Google Scholar 

  28. Fortney, J. J., Cooper, C. S., Showman, A. P., Marley, M. S. & Freedman, R. S. The influence of atmospheric dynamics on the infrared spectra and light curves of hot Jupiters. Astrophys. J. 652, 746–757 (2006)

    Article  ADS  CAS  Google Scholar 

  29. Mandel, K. & Agol, E. Analytic light curves for planetary transit searches. Astrophys. J. 580, L171–L175 (2002)

    Article  ADS  Google Scholar 

  30. Kurucz, R. Solar Abundance Model Atmospheres for 0, 1, 2, 4, and 8 km/s (CD-ROM 19, Smithsonian Astrophysical Observatory, Cambridge, Massachusetts, 1994)

    Google Scholar 

Download references

Acknowledgements

We thank J. Winn for sharing data from a recent paper describing the behaviour of the spots on the star, and D. Sasselov and E. Miller-Ricci for discussions on the properties of these spots. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. We are grateful to the entire Spitzer team for their assistance throughout this process. H.A.K. was supported by a National Science Foundation Graduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather A. Knutson.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knutson, H., Charbonneau, D., Allen, L. et al. A map of the day–night contrast of the extrasolar planet HD 189733b. Nature 447, 183–186 (2007). https://doi.org/10.1038/nature05782

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05782

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing