[go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Decoherence of matter waves by thermal emission of radiation

Abstract

Emergent quantum technologies have led to increasing interest in decoherence—the processes that limit the appearance of quantum effects and turn them into classical phenomena. One important cause of decoherence is the interaction of a quantum system with its environment, which ‘entangles’ the two and distributes the quantum coherence over so many degrees of freedom as to render it unobservable. Decoherence theory1,2,3,4 has been complemented by experiments using matter waves coupled to external photons5,6,7 or molecules8, and by investigations using coherent photon states9, trapped ions10 and electron interferometers11,12. Large molecules are particularly suitable for the investigation of the quantum–classical transition because they can store much energy in numerous internal degrees of freedom; the internal energy can be converted into thermal radiation and thus induce decoherence. Here we report matter wave interferometer experiments in which C70 molecules lose their quantum behaviour by thermal emission of radiation. We find good quantitative agreement between our experimental observations and microscopic decoherence theory. Decoherence by emission of thermal radiation is a general mechanism that should be relevant to all macroscopic bodies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Set-up for the observation of thermal decoherence in a Talbot–Lau molecule interferometer.
Figure 2: Molecule interferograms for C70 at 190 m s-1 for increasing laser heating powers, P.
Figure 3: Spectral photon emission rate Rλ of C70 molecules, as used for the calculation of thermal decoherence.
Figure 4: Decoherence curves.

Similar content being viewed by others

References

  1. Joos, E. et al. Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, Heidelberg, 2003)

    Book  Google Scholar 

  2. Blanchard, P., Giulini, D., Joos, E., Kiefer, C. & Stamatescu, I.-O. (eds) Decoherence: Theoretical, Experimental, and Conceptual Problems (Lecture Notes in Physics 538, Springer, Heidelberg, 2000)

  3. Imry, Y. Introduction to Mesoscopic Physics, 2nd edn (Oxford Univ. Press, Oxford, 2000)

    Google Scholar 

  4. Zurek, W. H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  5. Pfau, T., Spälter, S., Kurtsiefer, Ch., Ekstrom, C. R. & Mlynek, J. Loss of spatial coherence by a single spontaneous emission. Phys. Rev. Lett. 73, 1223–1226 (1994)

    Article  ADS  CAS  Google Scholar 

  6. Chapman, M. S. et al. Photon scattering from atoms in an atom interferometer: coherence lost and regained. Phys. Rev. Lett. 75, 3783–3787 (1995)

    Article  ADS  CAS  Google Scholar 

  7. Kokorowski, D. A., Cronin, A. D., Roberts, T. D. & Pritchard, D. E. From single- to multiple-photon decoherence in an atom interferometer. Phys. Rev. Lett. 86, 2191–2194 (2001)

    Article  ADS  CAS  Google Scholar 

  8. Hornberger, K. et al. Collisional decoherence observed in matter wave interferometry. Phys. Rev. Lett. 90, 160401 (2003)

    Article  ADS  Google Scholar 

  9. Brune, M. et al. Observing the progressive decoherence of the “meter” in a quantum measurement. Phys. Rev. Lett. 77, 4887–4890 (1996)

    Article  ADS  CAS  Google Scholar 

  10. Myatt, C. J. et al. Decoherence of quantum superpositions through coupling to engineered reservoirs. Nature 403, 269–273 (2000)

    Article  ADS  CAS  Google Scholar 

  11. Buks, E., Schuster, R., Heiblum, M., Mahalu, D. & Umansky, V. Dephasing in electron interference by a ‘which-path’ detector. Nature 391, 871–874 (1998)

    Article  ADS  CAS  Google Scholar 

  12. Ji, Y. et al. An electronic Mach–Zehnder interferometer. Nature 422, 415–418 (2003)

    Article  ADS  CAS  Google Scholar 

  13. Arndt, M. et al. Wave–particle duality of C60 molecules. Nature 401, 680–682 (1999)

    Article  ADS  CAS  Google Scholar 

  14. Brezger, B. et al. Matter-wave interferometer for large molecules. Phys. Rev. Lett. 88, 100404 (2002)

    Article  ADS  Google Scholar 

  15. Patorski, K. in Progress in Optics XXVII (ed. Wolf, E.) 2–108 (Elsevier Science, Amsterdam, 1989)

    Google Scholar 

  16. Clauser, J. F. & Li, S. Talbot-von Lau atom interferometry with cold slow potassium. Phys. Rev. A 49, R2213–R2217 (1994)

    Article  ADS  CAS  Google Scholar 

  17. Dresselhaus, M. S., Dresselhaus, G. & Eklund, P. C. Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, 1996)

    Google Scholar 

  18. Mitzner, R. & Campbell, E. E. B. Optical emission studies of laser desorbed C60 . J. Chem. Phys. 103, 2445–2453 (1995)

    Article  ADS  CAS  Google Scholar 

  19. Ding, D., Huang, J., Compton, R. N., Klots, C. E. & Haufler, R. E. Cw laser ionization of C60 and C70 . Phys. Rev. Lett. 73, 1084–1087 (1994)

    Article  ADS  CAS  Google Scholar 

  20. Hansen, K. & Echt, O. Thermionic emission and fragmentation of C60 . Phys. Rev. E 78, 2337–2340 (1997)

    ADS  CAS  Google Scholar 

  21. Kolodney, E., Tsipinyuk, B. & Budrevich, A. The thermal energy dependence (10–20 eV) of electron impact induced fragmentation of C60 in molecular beams: experiment and model calculations. J. Chem. Phys. 102, 9263–9275 (1995)

    Article  ADS  CAS  Google Scholar 

  22. Matt, S. et al. Kinetic energy release distribution and evaporation energies for metastable fullerene ions. Chem. Phys. Lett. 303, 379–386 (1999)

    Article  ADS  CAS  Google Scholar 

  23. Nairz, O., Arndt, M. & Zeilinger, A. Experimental challenges in fullerene interferometry. J. Mod. Opt. 47, 2811–2821 (2001)

    Article  ADS  Google Scholar 

  24. Heszler, P., Carlsson, J. O. & Demirev, P. Photon emission from gas phase fullerenes excited by 193 nm laser radiation. Chem. Phys. 107, 10440–10445 (1997)

    ADS  CAS  Google Scholar 

  25. Coheur, P. F., Carleer, M. & Colin, R. The absorption cross sections of C60 and C70 in the visible-UV region. J. Phys. B 29, 4987–4995 (1996)

    Article  ADS  CAS  Google Scholar 

  26. Hansen, K. & Campbell, E. E. B. Thermal radiation from small particles. Phys. Rev. E 58, 5477–5482 (1998)

    Article  ADS  CAS  Google Scholar 

  27. Hackermüller, L. et al. Wave nature of biomolecules and fluorofullerenes. Phys. Rev. Lett. 91, 090408 (2003)

    Article  ADS  Google Scholar 

  28. Clauser, J. F. in Experimental Metaphysics (eds Cohen, R. S., Home, M. & Stachel, J.) 1–11 (Kluwer Academic, Dordrecht, 1997)

    Google Scholar 

  29. Joos, E. & Zeh, H. D. The emergence of classical properties through interaction with the environment. Z. Phys. B 59, 223–243 (1985)

    Article  ADS  Google Scholar 

  30. Brezger, B., Arndt, M. & Zeilinger, A. Concepts for near-field interferometers with large molecules. J. Opt. B 5, 82–89 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank S. Uttenthaler for his support in an early stage of the experiment. We acknowledge support by the Austrian START programme, the Austrian FWF, the European TMR and Marie Curie programmes, and the DFG Emmy-Noether programme.Authors' contributions L.H. performed most of the experiments as a part of her Ph.D. thesis. K.H. developed the decoherence theory, and made the quantitative comparison between experiment and theory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Arndt.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hackermüller, L., Hornberger, K., Brezger, B. et al. Decoherence of matter waves by thermal emission of radiation. Nature 427, 711–714 (2004). https://doi.org/10.1038/nature02276

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02276

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing