Abstract
Many successful space missions over the past 40 years have highlighted the advantages and necessity of humans in the exploration of space. But as space travel becomes ever more feasible in the twenty-first century, the health and safety of future space explorers will be paramount. In particular, understanding the risks posed by exposure to radiation and extended weightlessness will be crucial if humans are to travel far from Earth.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others
References
Hoffman, S. J. & Kaplan, D. L. (eds) Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team 〈http://www-sn.jsc.nasa.gov/marsref/contents.html〉 (Lyndon B. Johnson Space Center, Houston, TX, 1997).
Space Studies Board, National Research Council. Scientific Opportunities in the Human Exploration of Space (National Academy Press, Washington DC, 1994).
Special Report: Sending Astronauts to Mars 〈http://www.sciam.com/2000/0300issue/0300currentissue.html〉 Sci. Am. 97 (March 2000).
Nicogossian, A., Huntoon, C. & Pool, S. (eds) Space Physiology and Medicine 3rd edn (Lea and Febiger, Philadelphia, 1994).
Morey-Holton, E. R., Whalen, R. T., Arnaud, S. B. & Van Der Meulen, M. C. in Handbook of Physiology. Section 4: Environmental Physiology (eds Fregly, M. J. & Blatteis, C. M.) 691–719 (American Physiological Society, New York, 1996).
Grigoriev, A. I. et al. Clinical and physiological evaluation of bone changes among astronauts after long-term space flights. Aviakosm Ekolog Med. 32, 21–25 (1998). [In Russian.]
Vico, L. et al. Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet 355, 1607–1611 (2000).
Smith, S. M. et al. Calcium metabolism before, during and after a 3-month spaceflight: kinetic and biochemical changes. Am. J. Physiol. 277, R1–R10 (1999).
Buckey, J. C. et al. Orthostatic intolerance following spaceflight. J. Appl. Physiol. 81, 7–18 (1996).
Wautenpaugh, D. E. & Hargens, A. R. in Handbook of Physiology. Section 4: Environmental Physiology (eds Fregly, M. J. & Blatteis, C. M.) 631–674 (American Physiological Society, New York, 1996).
Reyes, C., Freeman-Perez, S. & Fritsch-Yelle, J. Orthostatic intolerance following short and long duration spaceflight. FASEB J. 13, A1048 (1999).
Fritsch-Yelle, J. M. et al. An episode of ventricular tachycardia during long-duration spaceflight. Am. J. Cardiol. 81, 1391–1392 (1998).
Levine, B. D., Zuckerman, J. H. & Pawelczyk, J. A. Cardiac atrophy after bed-rest deconditioning: a non-neural mechanism for orthostatic intolerance. Circulation 96, 517–525 (1997).
Oman, C. M., Lichtenberg, B. K., Money, K. E. & McCoy, R. K. MIT/Canadian vestibular experiments on the Spacelab-1 mission: space motion sickness: symptoms, stimuli, and predictability. Exp. Brain Res. 64, 316–334 (1986).
Lackner, J. R. & DiZio, P. Human orientation and movement control in weightless and artificial gravity environments. Exp. Brain Res. 130, 2–26 (2000).
Reschke, M. F., Bloomberg, J. J., Harm, D. K. & Parker, D. E. in Space Physiology and Medicine 3rd edn (eds Nicogossian, A. E., Huntoon, C. L. & Pool, S. L.) 261–285 (Lea and Febiger, Philadelphia, 1994).
Young, L. R., Oman, C. M., Watt, D. G. D., Money, K. E. & Lichtenberg, B. K. Spatial orientation in weightlessness and readaptation to Earth's gravity. Science 225, 205–208 (1984).
Daunton, N. G. in Handbook of Physiology. Section 4: Environmental Physiology (eds Fregly, M. J. & Blatteis, C. M.) 765–783 (American Physiological Society, New York, 1996).
Baldwin, K. M. Effect of spaceflight on the functional, biochemical, and metabolic properties of skeletal muscle. Med. Sci. Sports Exerc. 28, 983–987 (1996).
Edgerton, V. R. et al. Human fiber size and enzymatic properties after 5 and 11 days of spaceflight. J. Appl. Physiol. 78, 1733–1739 (1995).
Fitts, R. H., Riley, D. R. & Widrick, J. J. Physiology of a microgravity environment. Invited review: Microgravity and skeletal muscle. J. Appl. Physiol. 89, 823–839 (2000).
Edgerton, V. R. & Roy, R. R. in Handbook of Physiology. Section 4: Environmental Physiology (eds Fregly, M. J. & Blatteis, C. M.) 721–763 (American Physiological Society, New York, 1996).
Czeisler, C. A. & Khalsa, S. B. in Principles and Practice of Sleep Medicine 3rd edn (eds Kryger, M. H., Roth, T. & Dement, W. C.) 353–375 (Saunders, Philadelphia, 2000).
Gündel, A., Polyakov, V. V. & Zulley, J. The alteration of human sleep and circadian rhythms during spaceflight. J. Sleep Res. 6, 1–8 (1997).
Taylor, G. R. Overview of spaceflight immunology studies. J. Leukoc. Biol. 54, 179–188 (1993).
Gmünder, F. K. & Cogoli, A. in Handbook of Physiology. Section 4: Environmental Physiology (eds Fregly, M. J. & Blatteis, C. M.) 799–814 (American Physiological Society, New York, 1996).
Kanas, N. Psychiatric issues affecting long duration space missions. Aviat. Space Environ. Med. 69, 1211–1216 (1998).
Ellis, S. R. Collision in space. Ergon. Design 8, 4–9 (2000).
Connors, M. M., Harrison, A. A. & Akins, F. R. Living Aloft (NASA, Washington, 1985).
Palinkas, L., Gunderson, E. K. E., Holland, A. W., Miller, C. & Johnson, J. C. Predictors of behavior and performance in extreme environments: the Antarctic space analogue program. Aviat. Space Environ. Med. 71, 619–625 (2000).
Schimmerling, W. Radiobiological problems in space: an overview. Radiat. Environ. Biophys. 31, 197–203 (1992).
Nelson, G. A. in Handbook of Physiology. Section 4: Environmental Physiology (eds Fregly, M. J. & Blatteis, C. M.) 785–798 (American Physiological Society, New York, 1996).
Space Studies Board, National Research Council. Radiation Hazards to Crews of Interplanetary Missions (National Academy Press, Washington DC, 1996).
Vazquez, M. E. Neurobiological problems in long-term deep space flights. Adv. Space Res. 22, 171–183 (1998).
Azzam, E. I., de Toledo, S. M. & Little, J. B. Direct evidence for the participation of gap junction-mediated intercellular communication in the transmission of damage signals from α-particle irradiated to nonirradiated cells. Proc. Natl Acad. Sci. USA 98, 473–478 (2001).
Kadhim, M. A. et al. Transmission of chromosomal instability after plutonium alpha-particle irradiation. Nature 355, 738–740 (1992).
Boyd, C. A. R. & Noble, D. (eds) The Logic of Life: The Challenge of Integrative Physiology (Oxford Univ. Press, Oxford, 1993).
Acknowledgements
The authors acknowledge many helpful discussions with R. J. Cohen, J. F. Dicello, D. F. Dinges, C. Golden, A. R. Kennedy, J. I. Leonard, C. M. Oman, R. J. Schwartz and J. R. Shapiro. Support for the preparation of this paper was provided by NASA, both directly and through Cooperative Agreement NCC 9-58 with the National Space Biomedical Research Institute.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
White, R., Averner, M. Humans in space. Nature 409, 1115–1118 (2001). https://doi.org/10.1038/35059243
Issue Date:
DOI: https://doi.org/10.1038/35059243