[go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Silicon carbide and the origin of interstellar carbon grains

Abstract

THE mechanisms of interstellar grain formation are not well understood. Such grains are complex1,2, with components that include silicates, ices and carbonaceous material. Several forms have been proposed for interstellar carbon, including graphite3, amorphous carbon4, polycyclic aromatic hydrocarbons (PAHs)5, diamond6, fullerenes7 and bacteria8. The stellar winds of carbon-rich red-giant stars are the dominant source of interstellar carbon grains9–11. However, the processes leading to the formation of grains are usually discussed only in the general terms of thermodynamics and classical nucleation theory12,13. One possibility9 is that PAH condensation initiates the formation of grains, similar to the formation of soot in hydrocarbon pyrolysis and combustion. Our recent computational study14 demonstrates by detailed chemical kinetics modelling that PAHs can, under certain conditions, form in carbon-star molecular envelopes within a 900–1,100-K temperature regime. Although homogeneous gas-phase condensation of PAHs might lead to the formation of grains, we suggest instead that SiC nucleates at higher temperatures and provides a surface for subsequent carbon condensation. Here we present experimental evidence in support of this idea.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tielens, A. G. G. M. & Allamandola, L. J. in Interstellar Processes (eds Hollenbach, D. J. & Thronson, H. A. Jr) 397–469 (Reidel, Dordrecht, 1987).

    Book  Google Scholar 

  2. Mathis, J. S. Astrophys. Lett. Commun. 26, 239–248 (1988).

    ADS  Google Scholar 

  3. Draine, B. T. & Lee, H. M. Astrophys. J. 285, 89–108 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Duley, W. W. & Williams, D. A. Mon. Not. R. astr. Soc. 205, 67P–70P (1983).

    Article  ADS  CAS  Google Scholar 

  5. Léger, A., d'Hendecourt, L. & Boccara, N. (eds) Polycyclic Aromatic Hydrocarbons and Astrophysics (Reidel, Dordrecht, 1987).

  6. Saslaw, W. C. & Gaustad, J. E. Nature 221, 160–162 (1969).

    Article  ADS  Google Scholar 

  7. Kroto, H. Science 242, 1017–1022 (1988).

    Article  Google Scholar 

  8. Hoyle, F., Wickramasinghe, N. C., Al-Mufti, S., Olavesen, A. H. & Wickramasinghe, D. T. Astrophys. Space Sci. 83, 405–409 (1982).

    Article  ADS  CAS  Google Scholar 

  9. Tielens, A. G. G. M. in Carbon in the Galaxy: Studies from Earth and Space (ed. Tarter, J.) (NASA Conference Publications, in the press).

  10. Bode, M. F. in Dust in the Universe (eds Barley, M. E. & Williams, D. A.) 73–102 (Cambridge Univ. Press, 1988).

    Google Scholar 

  11. Jura, M. & Kleinman, S. G. Astrophys. J. (in the press).

  12. Salpeter, E. E. Astrophys. J. 193, 585–592 (1974).

    Article  ADS  CAS  Google Scholar 

  13. Gail, H. P. & Sedlmayr, E. Astr. Astrophys. 171, 197–204 (1987).

    ADS  CAS  Google Scholar 

  14. Frenklach, M. & Feigelson, E. D. Astrophys. J. (in the press).

  15. Carmer, C. S. & Frenklach, M. Appl. Phys. Lett. 54, 1430–1432 (1989).

    Article  ADS  CAS  Google Scholar 

  16. Frenklach, M. 22nd Int. Symp. on Combustion (The Combustion Institute, Pittsburgh, Pennsylvania, in the press).

  17. Frenklach, M., Yuan, T. & Ramachandra, M. K. Energy & Fuels 2, 462–480 (1988).

    Article  CAS  Google Scholar 

  18. Gilman, R. C. Astrophys. J. 155, L185–L187 (1969).

    Article  ADS  Google Scholar 

  19. Friedemann, C. Physica 41, 139–143 (1969).

    Article  ADS  CAS  Google Scholar 

  20. McCabe, E. M. Mon. Not. R. astr. Soc. 200, 71–92 (1982).

    Article  ADS  CAS  Google Scholar 

  21. Gilra, D. P. Nature 229, 237–241 (1971).

    Article  ADS  CAS  Google Scholar 

  22. Treffers, R. & Cohen, M. Astrophys. J. 188, 545–552 (1974).

    Article  ADS  CAS  Google Scholar 

  23. Merrill, K. M. & Stein, W. A. Publs astr. Soc. Pacif. 88, 285–293 (1976).

    Article  ADS  CAS  Google Scholar 

  24. Blanco, A. et al. in Experiments on Cosmic Dust Analogues (eds Bussoletti, E., Fusco, C. & Longo, G.) 167–173 (Kluwer Academic Publications, Dordrecht, 1988).

    Book  Google Scholar 

  25. Strey, R., Wagner, P. E. & Schmeling, T. J. chem. Phys. 84, 2325–2335 (1986).

    Article  ADS  CAS  Google Scholar 

  26. Tabayashi, K. & Bauer, S. H. in Proc. 12th Int. Symp. on Shock Tube and Waves (eds Lifshitz, A. & Rom, J.) 409–418 (Magnes, Jerusalem, 1980).

    Google Scholar 

  27. Marchand, A. in Polycyclic Aromatic Hydrocarbons and Astrophysics (eds Léger, A., d'Hendecourt, L. & Boccara. N.) 31–54 (Reidel, Dordrecht, 1987).

    Book  Google Scholar 

  28. Deryagin, B. V. & Fedoseev, D. V. Growth of Diamond and Graphite from the Gas Phase (Nauka, Moscow, 1977).

    Google Scholar 

  29. Palmer, H. B. & Cullis, C. F. in Chemistry and Physics of Carbon (ed. Walker, P. L. Jr) 265–325 (Dekker, New York, 1965).

    Google Scholar 

  30. Tsuji, T. Astr. Astrophys. 197, 185–199 (1988).

    ADS  CAS  Google Scholar 

  31. Frenklach, M., Ting, L. & Palmer, H. B. Am. Inst. Chem. Eng. A. Meet. Paper 62j, Washington, DC (1988).

  32. Sawano, K., Haggerty, J. S. & Bowen, H. K. Yogyo-Kyokai-Shi 95, 64–69 (1987).

    Article  CAS  Google Scholar 

  33. Frenklach, M., Hsu, J. P., Miller, D. L. & Matula, R. A. Combust. Flame 64, 141–155 (1986).

    Article  CAS  Google Scholar 

  34. Frenklach, M. in Carbon in the Galaxy: Studies from Earth and Space (ed. Tarter, J.) (NASA Conference Publications, in the press).

  35. Popov, V. T. et al. Proc. Acad. Sci. U.S.S.R. (Phys. Chem. Sect.) 296, 923 (1987).

    Google Scholar 

  36. Frenklach, M. et al. J. appl. Phys. (in the press).

  37. Frenklach, M. & Ebert, L. B. J. phys. Chem. 92, 561–563 (1988).

    Article  CAS  Google Scholar 

  38. Messier, R. et al. Thin Solid Films 153, 1–9 (1987).

    Article  ADS  CAS  Google Scholar 

  39. Angus, J. C. & Hayman, C. C. Science 241, 913–921 (1988).

    Article  ADS  CAS  Google Scholar 

  40. Johnson, G. H., Badzian, A. R. & Geis, M. W. (eds) Diamond and Diamond-Like Materials Synthesis (Materials Research Society, Pittsburgh, 1988).

  41. Nemanich, R. J., Glass, J., Lucovsky, G. & Shroder, R. E. J. Vac. Sci. Technol. A 6, Part 2, 1783–1785 (1988).

    Article  ADS  CAS  Google Scholar 

  42. Ridgway, S. T. & Keady, J. J. Astrophys. J. 326, 843–858 (1988).

    Article  ADS  Google Scholar 

  43. Bernatowicz, T. et al. Nature 330, 728–730 (1987).

    Article  ADS  CAS  Google Scholar 

  44. Zinner, E., Tang, M. & Anders, E. Nature 330, 730–732 (1987).

    Article  ADS  CAS  Google Scholar 

  45. Tang, M. & Anders, E. Geochim. cosmochim. Acta 52, 1235–1244 (1988).

    Article  ADS  Google Scholar 

  46. Anders, E., Lewis, R. S., Tang, M. & Zinner, E. in Interstellar Dust (eds Allamandola, L. & Tielens, A.) (Reidel, Dordrecht, in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frenklach, M., Carmer, C. & Feigelson, E. Silicon carbide and the origin of interstellar carbon grains. Nature 339, 196–198 (1989). https://doi.org/10.1038/339196a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/339196a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing