[go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Protect, manage and then restore lands for climate mitigation

Abstract

Limited time and resources remain to constrain the climate crisis. Natural climate solutions represent promising options to protect, manage and restore natural lands for additional climate mitigation, but they differ in (1) the magnitude and (2) immediacy of mitigation potential, as well as (3) cost-effectiveness and (4) the co-benefits they offer. Counter to an emerging preference for restoration, we use these four criteria to propose a general rule of thumb to protect, manage and then restore lands, but also show how these criteria explain alternative prioritization and portfolio schemes. This hierarchy offers a decision-making framework for public and private sector actors to optimize the effectiveness of natural climate solutions in an environment in which resources are constrained, and time is short.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The NCS hierarchy starts with the protection of ecosystems and flows to improved management and restoration.
Fig. 2: Average MAC for NCS available for ≤$100 tCO2e−1.

Similar content being viewed by others

Data availability

Data underlying Fig. 2 and Supplementary Figs. 2 and 3 are available as Supplementary Data.

References

  1. IPCC Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

  2. Anderson, C. M. et al. Natural climate solutions are not enough. Science 363, 933–934 (2019).

    Article  CAS  Google Scholar 

  3. Carton, W., Lund, J. F. & Dooley, K. Undoing equivalence: rethinking carbon accounting for just carbon removal. Front. Clim. 3, 30 (2021).

    Article  Google Scholar 

  4. Seddon, N. et al. Getting the message right on nature-based solutions to climate change. Glob. Change Biol. 27, 1518–1546 (2021).

    Article  Google Scholar 

  5. Griscom, B. W. et al. We need both natural and energy solutions to stabilize our climate. Glob. Change Biol. 25, 1889–1890 (2019).

    Article  Google Scholar 

  6. Fargione, J. et al. Natural climate solutions for the United States. Sci. Adv. 4, eaat1869 (2018).

    Article  Google Scholar 

  7. Drever, C. R. et al. Natural climate solutions for Canada. Sci. Adv. 7, eabd6034 (2021).

    Article  CAS  Google Scholar 

  8. Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    Article  CAS  Google Scholar 

  9. Fuss, S. et al. Negative emissions—Part 2: costs, potentials and side effects. Environ. Res. Lett. 13, 63002 (2018).

    Article  Google Scholar 

  10. Gregorio, N. et al. in Enhancing Food Security Through Forest Landscape Restoration: Lessons from Burkina Faso, Brazil, Guatemala, Viet Nam, Ghana, Ethiopia and Philippines (eds Kumar, C. et al.) 174–217 (IUCN, 2015).

  11. Meyer, J. M. Gifford Pinchot, John Muir, and the boundaries of politics in American thought. Polity 30, 267–284 (1997).

    Article  Google Scholar 

  12. Standard on Biodiversity Offsets (BBOP, 2012).

  13. Performance Standard 6: Biodiversity Conservation and Sustainable Management of Natural Resources (IFC, 2012).

  14. Arlidge, W. N. S. et al. A global mitigation hierarchy for nature conservation. Bioscience 68, 336–347 (2018).

    Article  Google Scholar 

  15. Science-Based Targets for Nature: Initial Guidance for Business (Science Based Targets Network, 2020).

  16. Seddon, N. et al. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Phil. Trans. R. Soc. B 375, 20190120 (2020).

    Article  Google Scholar 

  17. Ellis, P. W. et al. Reduced-impact logging for climate change mitigation (RIL-C) can halve selective logging emissions from tropical forests. Ecol. Manag. 438, 255–266 (2019).

    Article  Google Scholar 

  18. Martin, D. M. Ecological restoration should be redefined for the twenty-first century. Restor. Ecol. 25, 668–673 (2017).

    Article  Google Scholar 

  19. Veldman, J. W. et al. Where tree planting and forest expansion are bad for biodiversity and ecosystem services. Bioscience 65, 1011–1018 (2015).

    Article  Google Scholar 

  20. Supporting Canadians and Fighting COVID-19 (Department of Finance Canada, 2020).

  21. Roe, S. et al. Contribution of the land sector to a 1.5 °C world. Nat. Clim. Change 9, 817–828 (2019).

    Article  Google Scholar 

  22. Seddon, N. et al. Nature-Based Solutions in Nationally Determined Contributions: Synthesis and Recommendations for Enhancing Climate Ambition and Action by 2020 (IUCN, 2019).

  23. Carbon Removal Corporate Action Tracker (Institute for Carbon Removal Law and Policy, accessed 6 July 2021); https://research.american.edu/carbonremoval/2020/05/07/carbon-removal-corporate-action-tracker/

  24. Pendrill, F. et al. Agricultural and forestry trade drives large share of tropical deforestation emissions. Glob. Environ. Change 56, 1–10 (2019).

    Article  Google Scholar 

  25. Goal 1 Assessment: Striving to End Natural Forest Loss (NYDF Progress Assessment Secretariat, 2020).

  26. Smith, B. One year later: The path to carbon negative—a progress report on our climate ‘moonshot’. Microsoft Blog (28 January 2021); https://blogs.microsoft.com/blog/2021/01/28/one-year-later-the-path-to-carbon-negative-a-progress-report-on-our-climate-moonshot/

  27. Ward, C. et al. Smallholder perceptions of land restoration activities: rewetting tropical peatland oil palm areas in Sumatra. Indonesia. Reg. Environ. Change 21, 1 (2020).

    Google Scholar 

  28. Jacobson, M. & Ham, C. The (un)broken promise of agroforestry: a case study of improved fallows in Zambia. Environ. Dev. Sustain. 22, 8247–8260 (2020).

    Article  Google Scholar 

  29. West, T. A. P., Börner, J., Sills, E. O. & Kontoleon, A. Overstated carbon emission reductions from voluntary REDD+ projects in the Brazilian Amazon. Proc. Natl Acad. Sci USA 117, 24188–24194 (2020).

    Article  CAS  Google Scholar 

  30. Cook-Patton, S. C. et al. Lower cost and more feasible options to restore forest cover in the contiguous United States for climate mitigation. One Earth 3, 739–752 (2020).

    Article  Google Scholar 

  31. Petersen, S. O., Højberg, O., Poulsen, M., Schwab, C. & Eriksen, J. Methanogenic community changes, and emissions of methane and other gases, during storage of acidified and untreated pig slurry. J. Appl. Microbiol. 117, 160–172 (2014).

    Article  CAS  Google Scholar 

  32. Günther, A. et al. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nat. Commun. 11, 1644 (2020).

    Article  Google Scholar 

  33. Qin, Z. et al. Delayed impact of natural climate solutions. Glob. Change Biol. 27, 215–217 (2021).

    Article  Google Scholar 

  34. Anderegg, W. R. L. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).

    Article  CAS  Google Scholar 

  35. Pagiola, S., Honey-Rosés, J. & Freire-González, J. Assessing the permanence of land-use change induced by payments for environmental services: evidence from Nicaragua. Trop. Conserv. Sci. https://doi.org/10.1177/1940082920922676 (2020).

  36. Tseng, T.-W. J. et al. Influence of land tenure interventions on human well-being and environmental outcomes. Nat. Sustain. 4, 242–251 (2021).

    Article  Google Scholar 

  37. Smith, P. et al. Impacts of land-based greenhouse gas removal options on ecosystem services and the United Nations Sustainable Development Goals. Annu. Rev. Environ. Resour. 44, 255–286 (2019).

    Article  Google Scholar 

  38. Nunez, S., Verboom, J. & Alkemade, R. Assessing land-based mitigation implications for biodiversity. Environ. Sci. Policy 106, 68–76 (2020).

    Article  Google Scholar 

  39. Chausson, A. et al. Mapping the effectiveness of nature-based solutions for climate change adaptation. Glob. Change Biol. 26, 6134–6155 (2020).

    Article  Google Scholar 

  40. Infield, M., Entwistle, A., Anthem, H., Mugisha, A. & Phillips, K. Reflections on cultural values approaches to conservation: lessons from 20 years of implementation. Oryx 52, 220–230 (2018).

    Article  Google Scholar 

  41. Rosenstock, T. S. et al. A planetary health perspective on agroforestry in sub-Saharan Africa. One Earth 1, 330–344 (2019).

    Article  Google Scholar 

  42. Garrett, H. E. et al. Hardwood silvopasture management in North America. Agrofor. Syst. 61, 21–33 (2004).

    Google Scholar 

  43. Kroeger, T. et al. Returns on investment in watershed conservation: application of a best practices analytical framework to the Rio Camboriú Water Producer program, Santa Catarina, Brazil. Sci. Total Environ. 657, 1368–1381 (2019).

    Article  CAS  Google Scholar 

  44. Lamb, D., Erskine, P. D. & Parrotta, J. A. Restoration of degraded tropical forest landscapes. Science 310, 1628–1632 (2005).

    Article  CAS  Google Scholar 

  45. Ferreira, J. et al. Carbon-focused conservation may fail to protect the most biodiverse tropical forests. Nat. Clim. Change 8, 744–749 (2018).

    Article  CAS  Google Scholar 

  46. Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).

    Article  CAS  Google Scholar 

  47. Wilson, S. J., Schelhas, J., Grau, R., Nanni, A. S. & Sloan, S. Forest ecosystem-service transitions: the ecological dimensions of the forest transition. Ecol. Soc. 22, 38 (2017).

    Article  Google Scholar 

  48. Funk, J. M. et al. Securing the climate benefits of stable forests. Clim. Policy 19, 845–860 (2019).

    Article  Google Scholar 

  49. Keith, H. et al. Evaluating nature-based solutions for climate mitigation and conservation requires comprehensive carbon accounting. Sci. Total Environ. 769, 144341 (2021).

    Article  CAS  Google Scholar 

  50. Moomaw, W. R., Masino, S. A. & Faison, E. K. Intact forests in the United States: proforestation mitigates climate change and serves the greatest good. Front. For. Glob. Change 2, 27 (2019).

    Article  Google Scholar 

  51. Hiraishi, T. et al. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (WMO, 2013).

  52. Goldstein, A. et al. Protecting irrecoverable carbon in Earth’s ecosystems. Nat. Clim. Change 10, 287–295 (2020).

    CAS  Google Scholar 

  53. Griscom, B. W. et al. National mitigation potential from natural climate solutions in the tropics. Phil. Trans. R. Soc. B 375, 20190126 (2020).

    Article  CAS  Google Scholar 

  54. Busch, J. et al. Potential for low-cost carbon dioxide removal through tropical reforestation. Nat. Clim. Change 9, 463–466 (2019).

    Article  CAS  Google Scholar 

  55. Vargas Zeppetello, L. R. et al. Large scale tropical deforestation drives extreme warming. Environ. Res. Lett. 15, 84012 (2020).

    Article  Google Scholar 

  56. Spalding, M. D. et al. The role of ecosystems in coastal protection: adapting to climate change and coastal hazards. Ocean Coast. Manag. 90, 50–57 (2014).

    Article  Google Scholar 

  57. Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).

    Article  Google Scholar 

  58. Global Assessment Report on Biodiversity and Ecosystem Services (IPBES, 2019).

  59. Dobson, A. P. et al. Ecology and economics for pandemic prevention. Science 369, 379–381 (2020).

    Article  CAS  Google Scholar 

  60. Streck, C. REDD+ and leakage: debunking myths and promoting integrated solutions. Clim. Policy 21, 843–852 (2021).

    Article  Google Scholar 

  61. Brancalion, P. H. S. et al. The cost of restoring carbon stocks in Brazil’s Atlantic Forest. Land Degrad. Dev. 32, 830–841 (2021).

    Article  Google Scholar 

  62. Bustamante-Sánchez, M. A. & Armesto, J. J. Seed limitation during early forest succession in a rural landscape on Chiloé Island, Chile: implications for temperate forest restoration. J. Appl. Ecol. 49, 1103–1112 (2012).

    Article  Google Scholar 

  63. Koch, A., Brierley, C. & Lewis, S. L. Effects of Earth system feedbacks on the potential mitigation of large-scale tropical forest restoration. Biogeosciences 18, 2627–2647 (2021).

    Article  CAS  Google Scholar 

  64. Zickfeld, K., Azevedo, D., Mathesius, S. & Matthews, H. D. Asymmetry in the climate–carbon cycle response to positive and negative CO2 emissions. Nat. Clim. Change 11, 613–617 (2021).

    CAS  Google Scholar 

  65. Johnson, K. A. et al. A benefit–cost analysis of floodplain land acquisition for US flood damage reduction. Nat. Sustain. 3, 56–62 (2020).

    Article  Google Scholar 

  66. Nolte, C. High-resolution land value maps reveal underestimation of conservation costs in the United States. Proc. Natl Acad. Sci. USA 117, 29577–29583 (2020).

    Article  CAS  Google Scholar 

  67. Reetz, H., Heffer, P. & Bruulsema, T. in Managing Water and Fertilizer for Sustainable Agricultural Intensification (eds Drechsel, P. et al.) 65–86 (IFA, IWMI, IPNI and IPI, 2015).

  68. Sharma, P. et al. The role of cover crops towards sustainable soil health and agriculture—a review paper. Am. J. Plant Sci. 09, 1935–1951 (2018).

    Article  CAS  Google Scholar 

  69. Bergeron, M. et al. Reduced soil nutrient leaching following the establishment of tree-based intercropping systems in eastern Canada. Agrofor. Syst. 83, 321–330 (2011).

    Article  Google Scholar 

  70. Moore, A. A. & Palmer, M. A. Invertebrate biodiveristy in agricultural and urban headwater streams: implications for conservation and management. Ecol. Appl. 15, 1169–1177 (2005).

    Article  Google Scholar 

  71. Martin, M. P. et al. People plant trees for utility more often than for biodiversity or carbon. Biol. Conserv. 261, 109224 (2021).

    Article  Google Scholar 

  72. Mendes, T. P., de Assis Montag, L. F., Alvarado, S. T. & Juen, L. Assessing habitat quality on alpha and beta diversity of Odonata larvae (Insect) in logging areas in Amazon forest. Hydrobiologia 848, 1147–1161 (2021).

    Article  Google Scholar 

  73. Crouzeilles, R. et al. Achieving cost-effective landscape-scale forest restoration through targeted natural regeneration. Conserv. Lett. 13, e12709 (2020).

    Article  Google Scholar 

  74. Gilroy, J. J. et al. Cheap carbon and biodiversity co-benefits from forest regeneration in a hotspot of endemism. Nat. Clim. Change 4, 503–507 (2014).

    Article  Google Scholar 

  75. Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article  Google Scholar 

  76. Strassburg, B. B. N. et al. Strategic approaches to restoring ecosystems can triple conservation gains and halve costs. Nat. Ecol. Evol. 3, 62–70 (2019).

    Article  Google Scholar 

  77. Taillardat, P., Thompson, B. S., Garneau, M., Trottier, K. & Friess, D. A. Climate change mitigation potential of wetlands and the cost-effectiveness of their restoration. Interface Focus 10, 20190129 (2020).

    Article  Google Scholar 

  78. Xu, S., Liu, X., Li, X. & Tian, C. Soil organic carbon changes following wetland restoration: a global meta-analysis. Geoderma 353, 89–96 (2019).

    Article  CAS  Google Scholar 

  79. Holl, K. D. & Brancalion, P. H. S. Tree planting is not a simple solution. Science 368, 580–581 (2020).

    Article  CAS  Google Scholar 

  80. Kroeger, T., McDonald, R. I., Boucher, T., Zhang, P. & Wang, L. Where the people are: current trends and future potential targeted investments in urban trees for PM10 and temperature mitigation in 27 U.S. cities. Landsc. Urban Plan. 177, 277–240 (2018).

    Article  Google Scholar 

  81. McDonald, R. I., Kroeger, T., Zhang, P. & Hamel, P. The value of US urban tree cover for reducing heat-related health impacts and electricity consumption. Ecosystems 23, 137–150 (2020).

    Article  Google Scholar 

  82. Heris, M. et al. Piloting urban ecosystem accounting for the United States. Ecosyst. Serv. 48, 101226 (2021).

    Article  Google Scholar 

  83. Ellison, D. et al. Trees, forests and water: cool insights for a hot world. Glob. Environ. Change 43, 51–61 (2017).

    Article  Google Scholar 

  84. Li, R. et al. Time and space catch up with restoration programs that ignore ecosystem service trade-offs. Sci. Adv. 7, eabf8650 (2021).

    Article  Google Scholar 

  85. Gaveau, D. L. A. et al. Rise and fall of forest loss and industrial plantations in Borneo (2000–2017). Conserv. Lett. 12, e12622 (2019).

    Article  Google Scholar 

  86. Griscom, B. W., Goodman, R. C., Burivalova, Z. & Putz, F. E. Carbon and biodiversity impacts of intensive versus extensive tropical forestry. Conserv. Lett. 11, e12362 (2018).

    Article  Google Scholar 

  87. Gabon’s Proposed National RED+ Forest Reference Level (Gabonese Republic, 2021).

  88. Umunay, P., Gregoire, T., Gopalakrishna, T., Ellis, P. & Putz, F. Selective logging emissions and potential emission reductions from reduced-impact logging in the Congo Basin. Ecol. Manag. 437, 360–371 (2019).

    Article  Google Scholar 

  89. Natural Climate Solutions World Atlas (Nature4Climate, accessed 9 December 2020); https://nature4climate.org/n4c-mapper/

  90. Dave, R. et al. Second Bonn Challenge Progress Report: Application of the Barometer in 2018 (IUCN, 2019); https://doi.org/10.2305/IUCN.CH.2019.06.en

  91. Kremen, C. & Merenlender, A. M. Landscapes that work for biodiversity and people. Science 362, eaau6020 (2018).

    Article  Google Scholar 

  92. Seymour, F. Seeing the forests as well as the (trillion) trees in corporate climate strategies. One Earth 2, 390–393 (2020).

    Article  Google Scholar 

  93. Kronenberg, J. & Mieszkowicz, J. Planting trees for publicity—how much are they worth? Sustainability 3, 1022–1034 (2011).

    Article  Google Scholar 

  94. Microsoft Carbon Removal: Lessons from an Early Corporate Purchase (Microsoft, 2021).

  95. Toor, I. A., Smith, E. G., Whalen, J. K. & Naseem, A. Tree-based intercropping in southern Ontario, Canada. Can. J. Agric. Econ. 60, 141–154 (2012).

    Article  Google Scholar 

  96. Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).

    Article  CAS  Google Scholar 

  97. zu Ermgassen, S. O. S. E. et al. The ecological outcomes of biodiversity offsets under “no net loss” policies: a global review. Conserv. Lett. 12, e12664 (2019).

    Article  Google Scholar 

  98. Adoption of the Paris Agreement FCCC/CP/2015/L.9/Rev.1 (UNFCCC, 2015).

Download references

Acknowledgements

This paper was developed with funding from the Government of Norway, although it does not necessarily reflect their views or opinions. Funding from the International Paper and the Bezos Earth Fund also supported this work. We thank R. Ellis for helping to develop the idea and J. Howard, F. Putz, W. Turner, M. C. Weikel and A. Wu for their critical reviews.

Author information

Authors and Affiliations

Authors

Contributions

P.W.E. proposed the initial idea. S.C.C.-P. further developed the idea and wrote the manuscript. T.K. conducted the economic analyses. S.Y. created Fig. 2 and all the Supplementary figures. All the co-authors contributed ideas and revised the manuscript.

Corresponding author

Correspondence to Susan C. Cook-Patton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Sarah Wilson, Pedro Brancalion and Alison Smith for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods (economic analysis), Table 1 and Figs. 1–3.

Supplementary Data 1

Source data for Fig. 2 of average marginal abatement costs when constrained to ≤$100 tCO2e−1.

Supplementary Data 2

Source data for Supplementary Fig. 2 of average marginal abatement costs when unconstrained by costs.

Supplementary Data 3

Source data for Supplementary Fig. 3 of average marginal abatement costs when constrained to ≤$50 tCO2e−1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cook-Patton, S.C., Drever, C.R., Griscom, B.W. et al. Protect, manage and then restore lands for climate mitigation. Nat. Clim. Chang. 11, 1027–1034 (2021). https://doi.org/10.1038/s41558-021-01198-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41558-021-01198-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing