Abstract
Traditional studies that combine spintronics and superconductivity have mainly focused on the injection of spin-polarized quasiparticles into superconducting materials. However, a complete synergy between superconducting and magnetic orders turns out to be possible through the creation of spin-triplet Cooper pairs, which are generated at carefully engineered superconductor interfaces with ferromagnetic materials. Currently, there is intense activity focused on identifying materials combinations that merge superconductivity and spintronics to enhance device functionality and performance. The results look promising: it has been shown, for example, that superconducting order can greatly enhance central effects in spintronics such as spin injection and magnetoresistance. Here, we review the experimental and theoretical advances in this field and provide an outlook for upcoming challenges in superconducting spintronics.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Zutic, I., Fabian, J. & Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323–409 (2004).
Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).
Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).
Meservey, R. & Tedrow, P. M. Spin-dependent tunneling into ferromagnetic nickel. Phys. Rev. Lett. 26, 192–195 (1971).
Meservey, R. & Tedrow, P. M. Spin polarization of electrons tunneling from films of Fe, Co, Ni, and Gd. Phys. Rev. B 7, 318–326 (1973).
Meservey, R. & Tedrow, P. M. Spin-polarized electron tunneling. Phys. Rep. 238, 173–243 (1994).
Johnson, M. & Silsbee, R. H. Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals. Phys. Rev. Lett. 55, 1790–1793 (1985).
Kivelson, S. A. & Rokhsar, D. S. Bogoliubov quasiparticles, spinons, and spin-charge decoupling in superconductors. Phys. Rev. B 41, 11693(R) (1990).
Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Microscopic theory of superconductivity. Phys. Rev. 106, 162–164 (1957).
Ginzburg, V. L. Ferromagnetic superconductors. Zh. Eksp. Teor. Fiz. 31, 202 (1956).
Berezinskii, V. L. New model of the anisotropic phase of superfluid He3 . JETP Lett. 20, 287–289 (1974).
Abrahams, E., Balatsky, A., Scalapino, D. J. & Schrieffer, J. R. Properties of odd-gap superconductors. Phys. Rev. B 52, 1271–1278 (1995).
Coleman, P., Miranda, E. & Tsvelik, A. Odd-frequency pairing in the Kondo lattice. Phys. Rev. B 49, 8955–8982 (1994).
Takahashi, S., Imamura, H. & Maekawa, S. Spin imbalance and magnetoresistance in ferromagnet/superconductor/ferromagnet double tunnel junctions. Phys. Rev. Lett. 82, 3911–3914 (1999).
Johnson, M. Spin coupled resistance observed in ferromagnet–superconductor–ferromagnet trilayers. Appl. Phys. Lett. 65, 1460–1462 (1994).
Bulaevskii, L. N., Kuzii, & Sobyanin, A. A. Superconducting system with weak coupling to the current in the ground state. JETP Lett. 25, 290–294 (1977).
Buzdin, A. I. Proximity effects in superconductor–ferromagnet heterostructures. Rev. Mod. Phys. 77, 935–975 (2005).
Bergeret, F. S., Volkov, A. F. & Efetov, K. B. Long-range proximity effects in superconductor–ferromagnet structures. Phys. Rev. Lett. 86, 4096–4099 (2001).
Kadigrobov, A., Shekhter, R. & Jonson, M. Quantum spin fluctuations as a source of long-range proximity effects in diffusive ferromagnet–superconductor structures. Europhys. Lett. 54, 394–400 (2001).
Bergeret, F. S., Volkov, A. F. & Efetov, K. B. Odd triplet superconductivity and related phenomena in superconductor–ferromagnet structures. Rev. Mod. Phys. 77, 1321–1373 (2005).
Eschrig, M., Kopu, J., Cuevas, J. C. & Schön, G. Theory of half-metal/superconductor heterostructures. Phys. Rev. Lett. 90, 137003 (2003).
Keizer, R. S. et al. A spin triplet supercurrent through the half-metallic ferromagnet CrO2 . Nature 439, 825–827 (2006).
Eschrig, M. Spin-polarized supercurrents for spintronics. Phys. Today 64 (1), 43–49 (2011).
Rashba, E. I. Properties of semiconductors with an extremum loop. I. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop. Sov. Phys. Solid State 2, 1109–1122 (1960).
Gor’kov, L. P. & Rashba, E. I. Superconducting 2D system with lifted spin degeneracy: Mixed singlet–triplet state. Phys. Rev. Lett. 87, 037004 (2001).
Leggett, A. K. A theoretical description of the new phases of liquid He3 . Rev. Mod. Phys. 47, 331–414 (1975).
Annunziata, G., Manske, D. & Linder, J. Proximity effect with noncentrosymmetric superconductors. Phys. Rev. B 86, 174514 (2012).
D’yakonov, M. I. & Perel, V. I. Spin orientation of electrons associated with the interband absorption of light in semiconductors. Sov. Phys. JETP 33, 1053–1059 (1971).
Bergeret, F. S. & Tokatly, I. V. Spin–orbit coupling as a source of long-range triplet proximity effect in superconductor–ferromagnet hybrid structures. Phys. Rev. B 89, 134517 (2014).
Usadel, K. D. Generalized diffusion equation for superconducting alloys. Phys. Rev. Lett. 25, 507–509 (1970).
Lutchyn, R. M., Sau, J. D. & Das Sarma, S. Majorana fermions and a topological phase transition in semiconductor–superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010).
Alicea, J. Majorana fermions in a tunable semiconductor device. Phys. Rev. B 81, 125318 (2010).
Nelson, K. D., Mao, Z. Q., Maeno, Y. & Liu, Y. Odd-parity superconductivity in Sr2RuO4 . Science 306, 1151–1154 (2004).
Saxena, S. S. et al. Superconductivity at the border of itinerant electron ferromagnetism in UGe2 . Nature 406, 587–592 (2000).
Aoki, D. et al. Coexistence of superconductivity and ferromagnetism in URhGe. Nature 413, 613–616 (2001).
Asano, Y. Spin current in p-wave superconducting rings. Phys. Rev. B 72, 092508 (2005).
Grønsleth, M. S., Linder, J., Børven, J-M. & Sudbø, A. Interplay between ferromagnetism and superconductivity in tunneling currents. Phys. Rev. Lett. 97, 147002 (2006).
Brydon, P. M. R., Manske, D. & Sigrist, M. Origin and control of spin currents in a magnetic triplet Josephson junction. J. Phys. Soc. Jpn 77, 103714 (2008).
Brydon, P. M. R., Asano, Y. & Timm, C. Spin Josephson effect with a single superconductor. Phys. Rev. B 83, 180504(R) (2011).
Tanaka, Y., Yokoyama, T., Balatsky, A. V. & Nagaosa, N. Theory of topological spin current in noncentrosymmetric superconductors. Phys. Rev. B 79, 060505(R) (2009).
Romeo, F. & Citro, R. Cooper pairs spintronics in triplet spin valves. Phys. Rev. Lett. 111, 226801 (2013).
Anwar, M. S. et al. Ferromagnet SrRuO3 thin-film deposition on a spin-triplet superconductor Sr2RuO4 with a highly conducting interface. Appl. Phys. Express 8, 015502 (2015).
Chen, C. D., Kuo, W., Chung, D. S., Shyu, J. H. & Wu, C. S. Evidence for suppression of superconductivity by spin imbalance in Co–Al–Co single-electron transistors. Phys. Rev. Lett. 88, 047004 (2002).
Yang, H., Yang, S-H., Takahashi, S., Maekawa, S. & Parkin, S. S. P. Extremely long quasiparticle spin lifetimes in superconducting aluminium using MgO tunnel spin injectors. Nature Mater. 9, 586–593 (2010).
Yamashita, T., Takahashi, S., Imamura, H. & Maekawa, S. Spin transport and relaxation in superconductors. Phys. Rev. B 65, 172509 (2002).
Quay, C. H. L., Chevallier, D., Bena, C. & Aprili, M. Spin imbalance and spin-charge separation in a mesoscopic superconductor. Nature Phys. 9, 84–88 (2013).
Hübler, F., Wolf, M. J., Beckmann, D. & Löhneysen, H. v. Long-range spin-polarized quasiparticle transport in mesoscopic Al superconductors with a Zeeman splitting. Phys. Rev. Lett. 109, 207001 (2012).
Poli, N. et al. Spin injection and relaxation in a mesoscopic superconductor. Phys. Rev. Lett. 100, 136601 (2008).
Morten, J. P., Brataas, A. & Belzig, W. Spin transport in diffusive superconductors. Phys. Rev. B 70, 212508 (2004).
Wakamura, T., Hasegawa, N., Ohnishi, K., Niimi, Y. & Otani, Y. Spin injection into a superconductor with strong spin–orbit coupling. Phys. Rev. Lett. 112, 036602 (2014).
De Gennes, P. G. Coupling between ferromagnets through a superconducting layer. Phys. Lett. 23, 10–11 (1966).
Hauser, J. J. Coupling between ferrimagnetic insulators through a superconducting layer. Phys. Rev. Lett. 23, 374–377 (1969).
Tagirov, L. R. Low-field superconducting spin switch based on a superconductor/ferromagnet multilayer. Phys. Rev. Lett. 83, 2058–2061 (1999).
Jiang, J. S., Davidovic, D., Reich, D. H. & Chien, C. L. Oscillatory superconducting transition temperature in Nb/Gd multilayers. Phys. Rev. Lett. 74, 314–317 (1995).
Mühge, Th. et al. Possible origin for oscillatory superconducting transition temperature in superconductor/ferromagnet multilayers. Phys. Rev. Lett. 77, 1857–1860 (1996).
Oh, S., Youm, D. & Beasley, M. R. A superconductive magnetoresistive memory element using controlled exchange interaction. Appl. Phys. Lett. 71, 2376–2378 (1997).
Fominov, Ya. V., Chtchelkatchev, N. M. & Golubov, A. A. Nonmonotonic critical temperature in superconductor/ferromagnet bilayers. Phys. Rev. B 66, 014507 (2002).
Clogston, M. Upper limit for the critical field in hard superconductors. Phys. Rev. Lett. 9, 266–267 (1962).
Chandrasekhar, B. S. A note on the maximum critical field of high-field superconductors. Appl. Phys. Lett. 1, 7–8 (1962).
Zhu, J., Krivorotov, I. N., Halterman, K. & Valls, O. T. Angular dependence of the superconducting transition temperature in ferromagnet–superconductor–ferromagnet trilayers. Phys. Rev. Lett. 105, 207002 (2010).
Leksin, P. V. et al. Evidence for triplet superconductivity in a superconductor–ferromagnet spin valve. Phys. Rev. Lett. 109, 057005 (2012).
Jara, A. A. et al. Angular dependence of superconductivity in superconductor/spin-valve heterostructures. Phys. Rev. B 89, 184502 (2014).
Banerjee, N. et al. Evidence for spin-selectivity of triplet pairs in superconducting spin-valves. Nature Commun. 5, 3048 (2014).
Gu, J. Y. et al. Magnetization-orientation dependence of the superconducting transition temperature in the ferromagnet–superconductor–ferromagnet system: CuNi/Nb/CuNi. Phys. Rev. Lett. 89, 267001 (2002).
Moraru, I. C., Pratt, W. P. Jr & Birge, N. O. Magnetization-dependent Tc shift in ferromagnet/superconductor/ferromagnet trilayers with a strong ferromagnet. Phys. Rev. Lett. 96, 037004 (2006).
Wang, X. L. et al. Giant triplet proximity effect in superconducting pseudo spin valves with engineered anisotropy. Phys. Rev. B 89, 140508(R) (2014).
Singh, A., Voltan, S., Lahabi, K. & Aarts, J. Colossal proximity effect in a superconducting triplet spin valve based on halfmetallic ferromagnetic CrO2 . Preprint at http://arxiv.org/abs/1410.4973 (2014).
Li, B. et al. Superconducting spin switch with infinite magnetoresistance induced by an internal exchange field. Phys. Rev. Lett. 110, 097001 (2013).
Westerholt, K. et al. Superconducting spin valve effect of a V layer coupled to an antiferromagnetic [Fe/V] superlattice. Phys. Rev. Lett. 95, 097003 (2005).
Miao, G-X., Ramos, A. V. & Moodera, J. S. Infinite magnetoresistance from the spin dependent proximity effect in symmetry driven bcc-Fe/V/Fe heteroepitaxial superconducting spin valves. Phys. Rev. Lett. 101, 137001 (2008).
Potenza, A. & Marrows, C. H. Superconductor–ferromagnet CuNiNbCuNi trilayers as superconducting spin-valve core structures. Phys. Rev. B 71, 180503(R) (2005).
Pena, V. et al. Giant magnetoresistance in ferromagnet/superconductor superlattices. Phys. Rev. Lett. 94, 057002 (2005).
Eremin, I., Nogueira, F. S. & Tarento, R-J. Spin and charge Josephson effects between non-uniform superconductors with coexisting helimagnetic order. Phys. Rev. B 73, 054507 (2006).
Halász, G. B., Blamire, M. G. & Robinson, J. W. A. Magnetic coupling-dependent triplet supercurrents in helimagnet/ferromagnet Josephson junctions. Phys. Rev. B 84, 024517 (2011).
Trifunovic, L., Popovic, Z. & Radovic, Z. Josephson effect and spin-triplet pairing correlations in SF1F2S junctions. Phys. Rev. B 84, 064511 (2011).
Mal’Shukov, A. G. & Brataas, A. Triplet supercurrent in ferromagnetic Josephson junctions by spin injection. Phys. Rev. B 86, 094517 (2012).
Eschrig, M. & Löfwander, T. Triplet supercurrents in clean and disordered half-metallic ferromagnets. Nature Phys. 4, 138–143 (2008).
Anwar, M. S., Czeschka, F., Hesselberth, M., Porcu, M. & Aarts, J. Long-range supercurrents through half-metallic ferromagnetic CrO2 . Phys. Rev. B 82, 100501(R) (2010).
Khaire, S. T., Khasawneh, M., Pratt, W. P. Jr & Birge, N. O. Observation of spin-triplet superconductivity in Co-based Josephson junctions. Phys. Rev. Lett. 104, 137002 (2010).
Robinson, J. W. A., Witt, J. D. S. & Blamire, M. G. Controlled injection of spin-triplet supercurrents into a strong ferromagnet. Science 329, 59–61 (2010).
Sprungmann, D., Westerholt, K., Zabel, H., Weides, M. & Kohlstedt, H. Evidence for triplet superconductivity in Josephson junctions with barriers of the ferromagnetic Heusler alloy Cu2MnAl. Phys. Rev. B 82, 060505(R) (2010).
Houzet, M. & Buzdin, A. I. Long range triplet Josephson effect through a ferromagnetic trilayer. Phys. Rev. B 76, 060504(R) (2007).
Waintal, X. & Brouwer, P. W. Magnetic exchange interaction induced by a Josephson current. Phys. Rev. B 65, 054407 (2002).
Zhao, E. & Sauls, J. A. Theory of nonequilibrium spin transport and spin transfer torque in superconducting–ferromagnetic nanostructures. Phys. Rev. B 78, 174511 (2008).
Konschelle, F. & Buzdin, A. Magnetic moment manipulation by a Josephson current. Phys. Rev. Lett. 102, 017001 (2009).
Linder, J. & Yokoyama, T. Supercurrent-induced magnetization dynamics. Phys. Rev. B 83, 012501 (2011).
Teber, S., Holmqvist, C. & Fogelström, M. Transport and magnetization dynamics in a superconductor/single-molecule magnet/superconductor junction. Phys. Rev. B 81, 174503 (2010).
Holmqvist, C., Teber, S. & Fogelström, M. Nonequilibrium effects in a Josephson junction coupled to a precessing spin. Phys. Rev. B 83, 104521 (2011).
Kulagina, I. & Linder, J. Spin supercurrent, magnetization dynamics, and ϕ-state in spin-textured Josephson junctions. Phys. Rev. B 90, 054504 (2014).
Houzet, M. Ferromagnetic Josephson junction with precessing magnetization. Phys. Rev. Lett. 101, 057009 (2008).
Yokoyama, T. & Tserkovnyak, Y. Tuning odd triplet superconductivity by spin pumping. Phys. Rev. B 80, 104416 (2009).
Zhu, J-X., Nussinov, Z., Shnirman, A. & Balatsky, A. V. Novel spin dynamics in a Josephson junction. Phys. Rev. Lett. 92, 107001 (2004).
Sacramento, P. D., Fernandes Silva, L. C., Nunes, G. S., Araujo, M. A. N. & Vieira, V. R. Supercurrent-induced domain wall motion. Phys. Rev. B 83, 054403 (2011).
Sacramento, P. D. & Araujo, M. A. N. Spin torque on magnetic domain walls exerted by supercurrents. Eur. Phys. J. B 76, 251–259 (2010).
Linder, J. & Halterman, K. Superconducting spintronics with magnetic domain walls. Phys. Rev. B 90, 104502 (2014).
Robinson, J. W. A., Chiodi, F., Halász, G. B., Egilmez, M. & Blamire, M. G. Supercurrent enhancement in Bloch domain walls. Sci. Rep. 2, 1–6 (2012).
Baker, T. E., Richie-Halford, A. & Bill, A. Long range triplet Josephson current and 0–π transition in tunable domain walls. New J. Phys. 16, 093048 (2014).
Braude, V. & Blanter, Ya. M. Triplet Josephson effect with magnetic feedback in a superconductor–ferromagnet heterostructure. Phys. Rev. Lett. 100, 207001 (2008).
Kulic, M. L. & Kulic, I. M. Possibility of a π Josephson junction and switch in superconductors with spiral magnetic order. Phys. Rev. B 63, 104503 (2001).
Pajovic, Z., Bozovic, M., Radovic, Z., Cayssol, J. & Buzdin, A. Josephson coupling through ferromagnetic heterojunctions with noncollinear magnetizations. Phys. Rev. B 74, 184509 (2006).
Ryazanov, V. V. et al. Coupling of two superconductors through a ferromagnet: Evidence for a π junction. Phys. Rev. Lett. 86, 2427–2430 (2001).
Asano, Y., Sawa, Y., Tanaka, Y. & Golubov, A. A. Odd-frequency pairs and Josephson current through a strong ferromagnet. Phys. Rev. B 76, 224525 (2007).
Margaris, I., Paltoglou, V. & Flytzanis, N. Zero phase difference supercurrent in ferromagnetic Josephson junctions. J. Phys. Condens. Matter 22, 445701 (2010).
Buzdin, A. Direct coupling between magnetism and superconducting current in the Josephson φ0 junction. Phys. Rev. Lett. 101, 107005 (2008).
Buzdin, A. & Koshelev, A. E. Periodic alternating 0- and π-junction structures as realization of φ-Josephson junctions. Phys. Rev. B 67, 220504(R) (2003).
Sickinger, H. et al. Experimental evidence of a φ Josephson junction. Phys. Rev. Lett. 109, 107002 (2012).
Machon, P., Eschrig, M. & Belzig, W. Nonlocal thermoelectric effects and nonlocal onsager relations in a three-terminal proximity-coupled superconductor–ferromagnet device. Phys. Rev. Lett. 110, 047002 (2013).
Ozaeta, A., Virtanen, P., Bergeret, F. S. & Heikkilä, T. Predicted very large thermoelectric effect in ferromagnet–superconductor junctions in the presence of a spin-splitting magnetic field. Phys. Rev. Lett. 112, 057001 (2014).
Kawabata, S., Ozaeta, A., Vasenko, A. S., Hekking, F. W. J. & Bergeret, F. S. Efficient electron refrigeration using superconductor/spin-filter devices. Appl. Phys. Lett. 103, 032602 (2013).
Giazotto, F., Robinson, J. W. A., Moodera, J. S. & Bergeret, F. S. Proposal for a phase-coherent thermoelectric transistor. Appl. Phys. Lett. 105, 062602 (2014).
Lange, M., Van Bael, M. J., Bruynseraede, Y. & Moshchalkov, V. V. Nanoengineered magnetic-field-induced superconductivity. Phys. Rev. Lett. 90, 197006 (2003).
Gillijns, W., Aladyshkin, A. Yu., Lange, M., Van Bael, M. J. & Moshchalkov, V. V. Domain-wall guided nucleation of superconductivity in hybrid ferromagnet–superconductor–ferromagnet layered structures. Phys. Rev. Lett. 95, 227003 (2005).
Villegas, J. E. & Schuller, I. K. Controllable manipulation of superconductivity using magnetic vortices. Supercond. Sci. Technol. 24, 024004 (2011).
Andreev, A. F. Thermal conductivity of the intermediate state of superconductors. Sov. Phys. JETP 19, 1228–1231 (1964).
Visani, C. et al. Equal-spin Andreev reflection and long-range coherent transport in high-temperature superconductor/half-metallic ferromagnet junctions. Nature Phys. 8, 539–543 (2012).
Kalcheim, Y. et al. Role of magnetic inhomogeneity in the proximity induced triplet superconductivity at ferromagnet–superconductor interfaces. Phys. Rev. B 89, 180506(R) (2014).
Acknowledgements
The authors acknowledge useful discussions with J. Aarts, M. Alidoust, M. Aprili, A. Balatsky, W. Belzig, F. Bergeret, A. Black-Schaffer, M. Blamire, A. Brataas, A. Buzdin, L. Cohen, M. Cuoco, M. Eschrig, F. Giazotto, G. Halász K. Halterman, I. Kulagina, O. Millo, J. Modera, N. Nagaosa, E. Scheer, A. Sudbø, Y. Tanaka and T. Yokoyama. J.L. was supported by the Research Council of Norway, Grants No. 205591 and 216700. J.W.A.R. was supported by the UK Royal Society and the Leverhulme Trust through an International Network Grant (IN-2013-033).
Author information
Authors and Affiliations
Contributions
J.L. and J.W.A.R. co-wrote the paper and contributed to all its aspects.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Linder, J., Robinson, J. Superconducting spintronics. Nature Phys 11, 307–315 (2015). https://doi.org/10.1038/nphys3242
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys3242
This article is cited by
-
P-wave Pairing Near a Spin-Split Josephson Junction
Journal of Low Temperature Physics (2024)
-
Superconducting tunnel junctions with layered superconductors
Quantum Frontiers (2024)
-
Revival of superconductivity in a one-dimensional dimerized diamond lattice
Scientific Reports (2023)
-
Direct observation of a superconducting vortex diode
Nature Communications (2023)
-
Ubiquitous spin freezing in the superconducting state of UTe2
Communications Physics (2023)