[go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Superconducting spintronics

Subjects

Abstract

Traditional studies that combine spintronics and superconductivity have mainly focused on the injection of spin-polarized quasiparticles into superconducting materials. However, a complete synergy between superconducting and magnetic orders turns out to be possible through the creation of spin-triplet Cooper pairs, which are generated at carefully engineered superconductor interfaces with ferromagnetic materials. Currently, there is intense activity focused on identifying materials combinations that merge superconductivity and spintronics to enhance device functionality and performance. The results look promising: it has been shown, for example, that superconducting order can greatly enhance central effects in spintronics such as spin injection and magnetoresistance. Here, we review the experimental and theoretical advances in this field and provide an outlook for upcoming challenges in superconducting spintronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cooper pair conversion from a spin-singlet state to a spin-triplet state and spin–charge separation in superconductors.
Figure 2: Applications of superconducting spintronics.
Figure 3: Recent experimental highlights for superconducting spintronics.

Similar content being viewed by others

References

  1. Zutic, I., Fabian, J. & Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323–409 (2004).

    Article  ADS  Google Scholar 

  2. Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).

    Article  ADS  Google Scholar 

  3. Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).

    Article  ADS  Google Scholar 

  4. Meservey, R. & Tedrow, P. M. Spin-dependent tunneling into ferromagnetic nickel. Phys. Rev. Lett. 26, 192–195 (1971).

    Article  ADS  Google Scholar 

  5. Meservey, R. & Tedrow, P. M. Spin polarization of electrons tunneling from films of Fe, Co, Ni, and Gd. Phys. Rev. B 7, 318–326 (1973).

    Article  ADS  Google Scholar 

  6. Meservey, R. & Tedrow, P. M. Spin-polarized electron tunneling. Phys. Rep. 238, 173–243 (1994).

    Article  ADS  Google Scholar 

  7. Johnson, M. & Silsbee, R. H. Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals. Phys. Rev. Lett. 55, 1790–1793 (1985).

    Article  ADS  Google Scholar 

  8. Kivelson, S. A. & Rokhsar, D. S. Bogoliubov quasiparticles, spinons, and spin-charge decoupling in superconductors. Phys. Rev. B 41, 11693(R) (1990).

    Article  ADS  Google Scholar 

  9. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Microscopic theory of superconductivity. Phys. Rev. 106, 162–164 (1957).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Ginzburg, V. L. Ferromagnetic superconductors. Zh. Eksp. Teor. Fiz. 31, 202 (1956).

    Google Scholar 

  11. Berezinskii, V. L. New model of the anisotropic phase of superfluid He3 . JETP Lett. 20, 287–289 (1974).

    ADS  Google Scholar 

  12. Abrahams, E., Balatsky, A., Scalapino, D. J. & Schrieffer, J. R. Properties of odd-gap superconductors. Phys. Rev. B 52, 1271–1278 (1995).

    Article  ADS  Google Scholar 

  13. Coleman, P., Miranda, E. & Tsvelik, A. Odd-frequency pairing in the Kondo lattice. Phys. Rev. B 49, 8955–8982 (1994).

    Article  ADS  Google Scholar 

  14. Takahashi, S., Imamura, H. & Maekawa, S. Spin imbalance and magnetoresistance in ferromagnet/superconductor/ferromagnet double tunnel junctions. Phys. Rev. Lett. 82, 3911–3914 (1999).

    Article  ADS  Google Scholar 

  15. Johnson, M. Spin coupled resistance observed in ferromagnet–superconductor–ferromagnet trilayers. Appl. Phys. Lett. 65, 1460–1462 (1994).

    Article  ADS  Google Scholar 

  16. Bulaevskii, L. N., Kuzii, & Sobyanin, A. A. Superconducting system with weak coupling to the current in the ground state. JETP Lett. 25, 290–294 (1977).

    ADS  Google Scholar 

  17. Buzdin, A. I. Proximity effects in superconductor–ferromagnet heterostructures. Rev. Mod. Phys. 77, 935–975 (2005).

    Article  ADS  Google Scholar 

  18. Bergeret, F. S., Volkov, A. F. & Efetov, K. B. Long-range proximity effects in superconductor–ferromagnet structures. Phys. Rev. Lett. 86, 4096–4099 (2001).

    Article  ADS  Google Scholar 

  19. Kadigrobov, A., Shekhter, R. & Jonson, M. Quantum spin fluctuations as a source of long-range proximity effects in diffusive ferromagnet–superconductor structures. Europhys. Lett. 54, 394–400 (2001).

    Article  ADS  Google Scholar 

  20. Bergeret, F. S., Volkov, A. F. & Efetov, K. B. Odd triplet superconductivity and related phenomena in superconductor–ferromagnet structures. Rev. Mod. Phys. 77, 1321–1373 (2005).

    Article  ADS  Google Scholar 

  21. Eschrig, M., Kopu, J., Cuevas, J. C. & Schön, G. Theory of half-metal/superconductor heterostructures. Phys. Rev. Lett. 90, 137003 (2003).

    Article  ADS  Google Scholar 

  22. Keizer, R. S. et al. A spin triplet supercurrent through the half-metallic ferromagnet CrO2 . Nature 439, 825–827 (2006).

    Article  ADS  Google Scholar 

  23. Eschrig, M. Spin-polarized supercurrents for spintronics. Phys. Today 64 (1), 43–49 (2011).

    Article  ADS  Google Scholar 

  24. Rashba, E. I. Properties of semiconductors with an extremum loop. I. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop. Sov. Phys. Solid State 2, 1109–1122 (1960).

    Google Scholar 

  25. Gor’kov, L. P. & Rashba, E. I. Superconducting 2D system with lifted spin degeneracy: Mixed singlet–triplet state. Phys. Rev. Lett. 87, 037004 (2001).

    Article  ADS  Google Scholar 

  26. Leggett, A. K. A theoretical description of the new phases of liquid He3 . Rev. Mod. Phys. 47, 331–414 (1975).

    ADS  Google Scholar 

  27. Annunziata, G., Manske, D. & Linder, J. Proximity effect with noncentrosymmetric superconductors. Phys. Rev. B 86, 174514 (2012).

    Article  ADS  Google Scholar 

  28. D’yakonov, M. I. & Perel, V. I. Spin orientation of electrons associated with the interband absorption of light in semiconductors. Sov. Phys. JETP 33, 1053–1059 (1971).

    ADS  Google Scholar 

  29. Bergeret, F. S. & Tokatly, I. V. Spin–orbit coupling as a source of long-range triplet proximity effect in superconductor–ferromagnet hybrid structures. Phys. Rev. B 89, 134517 (2014).

    Article  ADS  Google Scholar 

  30. Usadel, K. D. Generalized diffusion equation for superconducting alloys. Phys. Rev. Lett. 25, 507–509 (1970).

    Article  ADS  Google Scholar 

  31. Lutchyn, R. M., Sau, J. D. & Das Sarma, S. Majorana fermions and a topological phase transition in semiconductor–superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010).

    Article  ADS  Google Scholar 

  32. Alicea, J. Majorana fermions in a tunable semiconductor device. Phys. Rev. B 81, 125318 (2010).

    Article  ADS  Google Scholar 

  33. Nelson, K. D., Mao, Z. Q., Maeno, Y. & Liu, Y. Odd-parity superconductivity in Sr2RuO4 . Science 306, 1151–1154 (2004).

    Article  ADS  Google Scholar 

  34. Saxena, S. S. et al. Superconductivity at the border of itinerant electron ferromagnetism in UGe2 . Nature 406, 587–592 (2000).

    Article  ADS  Google Scholar 

  35. Aoki, D. et al. Coexistence of superconductivity and ferromagnetism in URhGe. Nature 413, 613–616 (2001).

    Article  ADS  Google Scholar 

  36. Asano, Y. Spin current in p-wave superconducting rings. Phys. Rev. B 72, 092508 (2005).

    Article  ADS  Google Scholar 

  37. Grønsleth, M. S., Linder, J., Børven, J-M. & Sudbø, A. Interplay between ferromagnetism and superconductivity in tunneling currents. Phys. Rev. Lett. 97, 147002 (2006).

    Article  ADS  Google Scholar 

  38. Brydon, P. M. R., Manske, D. & Sigrist, M. Origin and control of spin currents in a magnetic triplet Josephson junction. J. Phys. Soc. Jpn 77, 103714 (2008).

    Article  ADS  Google Scholar 

  39. Brydon, P. M. R., Asano, Y. & Timm, C. Spin Josephson effect with a single superconductor. Phys. Rev. B 83, 180504(R) (2011).

    Article  ADS  Google Scholar 

  40. Tanaka, Y., Yokoyama, T., Balatsky, A. V. & Nagaosa, N. Theory of topological spin current in noncentrosymmetric superconductors. Phys. Rev. B 79, 060505(R) (2009).

    Article  ADS  Google Scholar 

  41. Romeo, F. & Citro, R. Cooper pairs spintronics in triplet spin valves. Phys. Rev. Lett. 111, 226801 (2013).

    Article  ADS  Google Scholar 

  42. Anwar, M. S. et al. Ferromagnet SrRuO3 thin-film deposition on a spin-triplet superconductor Sr2RuO4 with a highly conducting interface. Appl. Phys. Express 8, 015502 (2015).

    Article  ADS  Google Scholar 

  43. Chen, C. D., Kuo, W., Chung, D. S., Shyu, J. H. & Wu, C. S. Evidence for suppression of superconductivity by spin imbalance in Co–Al–Co single-electron transistors. Phys. Rev. Lett. 88, 047004 (2002).

    Article  ADS  Google Scholar 

  44. Yang, H., Yang, S-H., Takahashi, S., Maekawa, S. & Parkin, S. S. P. Extremely long quasiparticle spin lifetimes in superconducting aluminium using MgO tunnel spin injectors. Nature Mater. 9, 586–593 (2010).

    Article  ADS  Google Scholar 

  45. Yamashita, T., Takahashi, S., Imamura, H. & Maekawa, S. Spin transport and relaxation in superconductors. Phys. Rev. B 65, 172509 (2002).

    Article  ADS  Google Scholar 

  46. Quay, C. H. L., Chevallier, D., Bena, C. & Aprili, M. Spin imbalance and spin-charge separation in a mesoscopic superconductor. Nature Phys. 9, 84–88 (2013).

    ADS  Google Scholar 

  47. Hübler, F., Wolf, M. J., Beckmann, D. & Löhneysen, H. v. Long-range spin-polarized quasiparticle transport in mesoscopic Al superconductors with a Zeeman splitting. Phys. Rev. Lett. 109, 207001 (2012).

    Article  ADS  Google Scholar 

  48. Poli, N. et al. Spin injection and relaxation in a mesoscopic superconductor. Phys. Rev. Lett. 100, 136601 (2008).

    Article  ADS  Google Scholar 

  49. Morten, J. P., Brataas, A. & Belzig, W. Spin transport in diffusive superconductors. Phys. Rev. B 70, 212508 (2004).

    Article  ADS  Google Scholar 

  50. Wakamura, T., Hasegawa, N., Ohnishi, K., Niimi, Y. & Otani, Y. Spin injection into a superconductor with strong spin–orbit coupling. Phys. Rev. Lett. 112, 036602 (2014).

    Article  ADS  Google Scholar 

  51. De Gennes, P. G. Coupling between ferromagnets through a superconducting layer. Phys. Lett. 23, 10–11 (1966).

    Article  ADS  Google Scholar 

  52. Hauser, J. J. Coupling between ferrimagnetic insulators through a superconducting layer. Phys. Rev. Lett. 23, 374–377 (1969).

    Article  ADS  Google Scholar 

  53. Tagirov, L. R. Low-field superconducting spin switch based on a superconductor/ferromagnet multilayer. Phys. Rev. Lett. 83, 2058–2061 (1999).

    Article  ADS  Google Scholar 

  54. Jiang, J. S., Davidovic, D., Reich, D. H. & Chien, C. L. Oscillatory superconducting transition temperature in Nb/Gd multilayers. Phys. Rev. Lett. 74, 314–317 (1995).

    Article  ADS  Google Scholar 

  55. Mühge, Th. et al. Possible origin for oscillatory superconducting transition temperature in superconductor/ferromagnet multilayers. Phys. Rev. Lett. 77, 1857–1860 (1996).

    Article  ADS  Google Scholar 

  56. Oh, S., Youm, D. & Beasley, M. R. A superconductive magnetoresistive memory element using controlled exchange interaction. Appl. Phys. Lett. 71, 2376–2378 (1997).

    Article  ADS  Google Scholar 

  57. Fominov, Ya. V., Chtchelkatchev, N. M. & Golubov, A. A. Nonmonotonic critical temperature in superconductor/ferromagnet bilayers. Phys. Rev. B 66, 014507 (2002).

    Article  ADS  Google Scholar 

  58. Clogston, M. Upper limit for the critical field in hard superconductors. Phys. Rev. Lett. 9, 266–267 (1962).

    Article  ADS  Google Scholar 

  59. Chandrasekhar, B. S. A note on the maximum critical field of high-field superconductors. Appl. Phys. Lett. 1, 7–8 (1962).

    Article  ADS  Google Scholar 

  60. Zhu, J., Krivorotov, I. N., Halterman, K. & Valls, O. T. Angular dependence of the superconducting transition temperature in ferromagnet–superconductor–ferromagnet trilayers. Phys. Rev. Lett. 105, 207002 (2010).

    Article  ADS  Google Scholar 

  61. Leksin, P. V. et al. Evidence for triplet superconductivity in a superconductor–ferromagnet spin valve. Phys. Rev. Lett. 109, 057005 (2012).

    Article  ADS  Google Scholar 

  62. Jara, A. A. et al. Angular dependence of superconductivity in superconductor/spin-valve heterostructures. Phys. Rev. B 89, 184502 (2014).

    Article  ADS  Google Scholar 

  63. Banerjee, N. et al. Evidence for spin-selectivity of triplet pairs in superconducting spin-valves. Nature Commun. 5, 3048 (2014).

    Article  ADS  Google Scholar 

  64. Gu, J. Y. et al. Magnetization-orientation dependence of the superconducting transition temperature in the ferromagnet–superconductor–ferromagnet system: CuNi/Nb/CuNi. Phys. Rev. Lett. 89, 267001 (2002).

    Article  ADS  Google Scholar 

  65. Moraru, I. C., Pratt, W. P. Jr & Birge, N. O. Magnetization-dependent Tc shift in ferromagnet/superconductor/ferromagnet trilayers with a strong ferromagnet. Phys. Rev. Lett. 96, 037004 (2006).

    Article  ADS  Google Scholar 

  66. Wang, X. L. et al. Giant triplet proximity effect in superconducting pseudo spin valves with engineered anisotropy. Phys. Rev. B 89, 140508(R) (2014).

    Article  ADS  Google Scholar 

  67. Singh, A., Voltan, S., Lahabi, K. & Aarts, J. Colossal proximity effect in a superconducting triplet spin valve based on halfmetallic ferromagnetic CrO2 . Preprint at http://arxiv.org/abs/1410.4973 (2014).

  68. Li, B. et al. Superconducting spin switch with infinite magnetoresistance induced by an internal exchange field. Phys. Rev. Lett. 110, 097001 (2013).

    Article  ADS  Google Scholar 

  69. Westerholt, K. et al. Superconducting spin valve effect of a V layer coupled to an antiferromagnetic [Fe/V] superlattice. Phys. Rev. Lett. 95, 097003 (2005).

    Article  ADS  Google Scholar 

  70. Miao, G-X., Ramos, A. V. & Moodera, J. S. Infinite magnetoresistance from the spin dependent proximity effect in symmetry driven bcc-Fe/V/Fe heteroepitaxial superconducting spin valves. Phys. Rev. Lett. 101, 137001 (2008).

    Article  ADS  Google Scholar 

  71. Potenza, A. & Marrows, C. H. Superconductor–ferromagnet CuNiNbCuNi trilayers as superconducting spin-valve core structures. Phys. Rev. B 71, 180503(R) (2005).

    Article  ADS  Google Scholar 

  72. Pena, V. et al. Giant magnetoresistance in ferromagnet/superconductor superlattices. Phys. Rev. Lett. 94, 057002 (2005).

    Article  ADS  Google Scholar 

  73. Eremin, I., Nogueira, F. S. & Tarento, R-J. Spin and charge Josephson effects between non-uniform superconductors with coexisting helimagnetic order. Phys. Rev. B 73, 054507 (2006).

    Article  ADS  Google Scholar 

  74. Halász, G. B., Blamire, M. G. & Robinson, J. W. A. Magnetic coupling-dependent triplet supercurrents in helimagnet/ferromagnet Josephson junctions. Phys. Rev. B 84, 024517 (2011).

    Article  ADS  Google Scholar 

  75. Trifunovic, L., Popovic, Z. & Radovic, Z. Josephson effect and spin-triplet pairing correlations in SF1F2S junctions. Phys. Rev. B 84, 064511 (2011).

    Article  ADS  Google Scholar 

  76. Mal’Shukov, A. G. & Brataas, A. Triplet supercurrent in ferromagnetic Josephson junctions by spin injection. Phys. Rev. B 86, 094517 (2012).

    Article  ADS  Google Scholar 

  77. Eschrig, M. & Löfwander, T. Triplet supercurrents in clean and disordered half-metallic ferromagnets. Nature Phys. 4, 138–143 (2008).

    Article  ADS  Google Scholar 

  78. Anwar, M. S., Czeschka, F., Hesselberth, M., Porcu, M. & Aarts, J. Long-range supercurrents through half-metallic ferromagnetic CrO2 . Phys. Rev. B 82, 100501(R) (2010).

    Article  ADS  Google Scholar 

  79. Khaire, S. T., Khasawneh, M., Pratt, W. P. Jr & Birge, N. O. Observation of spin-triplet superconductivity in Co-based Josephson junctions. Phys. Rev. Lett. 104, 137002 (2010).

    Article  ADS  Google Scholar 

  80. Robinson, J. W. A., Witt, J. D. S. & Blamire, M. G. Controlled injection of spin-triplet supercurrents into a strong ferromagnet. Science 329, 59–61 (2010).

    Article  ADS  Google Scholar 

  81. Sprungmann, D., Westerholt, K., Zabel, H., Weides, M. & Kohlstedt, H. Evidence for triplet superconductivity in Josephson junctions with barriers of the ferromagnetic Heusler alloy Cu2MnAl. Phys. Rev. B 82, 060505(R) (2010).

    Article  ADS  Google Scholar 

  82. Houzet, M. & Buzdin, A. I. Long range triplet Josephson effect through a ferromagnetic trilayer. Phys. Rev. B 76, 060504(R) (2007).

    Article  ADS  Google Scholar 

  83. Waintal, X. & Brouwer, P. W. Magnetic exchange interaction induced by a Josephson current. Phys. Rev. B 65, 054407 (2002).

    Article  ADS  Google Scholar 

  84. Zhao, E. & Sauls, J. A. Theory of nonequilibrium spin transport and spin transfer torque in superconducting–ferromagnetic nanostructures. Phys. Rev. B 78, 174511 (2008).

    Article  ADS  Google Scholar 

  85. Konschelle, F. & Buzdin, A. Magnetic moment manipulation by a Josephson current. Phys. Rev. Lett. 102, 017001 (2009).

    Article  ADS  Google Scholar 

  86. Linder, J. & Yokoyama, T. Supercurrent-induced magnetization dynamics. Phys. Rev. B 83, 012501 (2011).

    Article  ADS  Google Scholar 

  87. Teber, S., Holmqvist, C. & Fogelström, M. Transport and magnetization dynamics in a superconductor/single-molecule magnet/superconductor junction. Phys. Rev. B 81, 174503 (2010).

    Article  ADS  Google Scholar 

  88. Holmqvist, C., Teber, S. & Fogelström, M. Nonequilibrium effects in a Josephson junction coupled to a precessing spin. Phys. Rev. B 83, 104521 (2011).

    Article  ADS  Google Scholar 

  89. Kulagina, I. & Linder, J. Spin supercurrent, magnetization dynamics, and ϕ-state in spin-textured Josephson junctions. Phys. Rev. B 90, 054504 (2014).

    Article  ADS  Google Scholar 

  90. Houzet, M. Ferromagnetic Josephson junction with precessing magnetization. Phys. Rev. Lett. 101, 057009 (2008).

    Article  ADS  Google Scholar 

  91. Yokoyama, T. & Tserkovnyak, Y. Tuning odd triplet superconductivity by spin pumping. Phys. Rev. B 80, 104416 (2009).

    Article  ADS  Google Scholar 

  92. Zhu, J-X., Nussinov, Z., Shnirman, A. & Balatsky, A. V. Novel spin dynamics in a Josephson junction. Phys. Rev. Lett. 92, 107001 (2004).

    Article  ADS  Google Scholar 

  93. Sacramento, P. D., Fernandes Silva, L. C., Nunes, G. S., Araujo, M. A. N. & Vieira, V. R. Supercurrent-induced domain wall motion. Phys. Rev. B 83, 054403 (2011).

    Article  ADS  Google Scholar 

  94. Sacramento, P. D. & Araujo, M. A. N. Spin torque on magnetic domain walls exerted by supercurrents. Eur. Phys. J. B 76, 251–259 (2010).

    Article  ADS  Google Scholar 

  95. Linder, J. & Halterman, K. Superconducting spintronics with magnetic domain walls. Phys. Rev. B 90, 104502 (2014).

    Article  ADS  Google Scholar 

  96. Robinson, J. W. A., Chiodi, F., Halász, G. B., Egilmez, M. & Blamire, M. G. Supercurrent enhancement in Bloch domain walls. Sci. Rep. 2, 1–6 (2012).

    Article  Google Scholar 

  97. Baker, T. E., Richie-Halford, A. & Bill, A. Long range triplet Josephson current and 0–π transition in tunable domain walls. New J. Phys. 16, 093048 (2014).

    Article  ADS  Google Scholar 

  98. Braude, V. & Blanter, Ya. M. Triplet Josephson effect with magnetic feedback in a superconductor–ferromagnet heterostructure. Phys. Rev. Lett. 100, 207001 (2008).

    Article  ADS  Google Scholar 

  99. Kulic, M. L. & Kulic, I. M. Possibility of a π Josephson junction and switch in superconductors with spiral magnetic order. Phys. Rev. B 63, 104503 (2001).

    Article  ADS  Google Scholar 

  100. Pajovic, Z., Bozovic, M., Radovic, Z., Cayssol, J. & Buzdin, A. Josephson coupling through ferromagnetic heterojunctions with noncollinear magnetizations. Phys. Rev. B 74, 184509 (2006).

    Article  ADS  Google Scholar 

  101. Ryazanov, V. V. et al. Coupling of two superconductors through a ferromagnet: Evidence for a π junction. Phys. Rev. Lett. 86, 2427–2430 (2001).

    Article  ADS  Google Scholar 

  102. Asano, Y., Sawa, Y., Tanaka, Y. & Golubov, A. A. Odd-frequency pairs and Josephson current through a strong ferromagnet. Phys. Rev. B 76, 224525 (2007).

    Article  ADS  Google Scholar 

  103. Margaris, I., Paltoglou, V. & Flytzanis, N. Zero phase difference supercurrent in ferromagnetic Josephson junctions. J. Phys. Condens. Matter 22, 445701 (2010).

    Article  ADS  Google Scholar 

  104. Buzdin, A. Direct coupling between magnetism and superconducting current in the Josephson φ0 junction. Phys. Rev. Lett. 101, 107005 (2008).

    Article  ADS  Google Scholar 

  105. Buzdin, A. & Koshelev, A. E. Periodic alternating 0- and π-junction structures as realization of φ-Josephson junctions. Phys. Rev. B 67, 220504(R) (2003).

    Article  ADS  Google Scholar 

  106. Sickinger, H. et al. Experimental evidence of a φ Josephson junction. Phys. Rev. Lett. 109, 107002 (2012).

    Article  ADS  Google Scholar 

  107. Machon, P., Eschrig, M. & Belzig, W. Nonlocal thermoelectric effects and nonlocal onsager relations in a three-terminal proximity-coupled superconductor–ferromagnet device. Phys. Rev. Lett. 110, 047002 (2013).

    Article  ADS  Google Scholar 

  108. Ozaeta, A., Virtanen, P., Bergeret, F. S. & Heikkilä, T. Predicted very large thermoelectric effect in ferromagnet–superconductor junctions in the presence of a spin-splitting magnetic field. Phys. Rev. Lett. 112, 057001 (2014).

    Article  ADS  Google Scholar 

  109. Kawabata, S., Ozaeta, A., Vasenko, A. S., Hekking, F. W. J. & Bergeret, F. S. Efficient electron refrigeration using superconductor/spin-filter devices. Appl. Phys. Lett. 103, 032602 (2013).

    Article  ADS  Google Scholar 

  110. Giazotto, F., Robinson, J. W. A., Moodera, J. S. & Bergeret, F. S. Proposal for a phase-coherent thermoelectric transistor. Appl. Phys. Lett. 105, 062602 (2014).

    Article  ADS  Google Scholar 

  111. Lange, M., Van Bael, M. J., Bruynseraede, Y. & Moshchalkov, V. V. Nanoengineered magnetic-field-induced superconductivity. Phys. Rev. Lett. 90, 197006 (2003).

    Article  ADS  Google Scholar 

  112. Gillijns, W., Aladyshkin, A. Yu., Lange, M., Van Bael, M. J. & Moshchalkov, V. V. Domain-wall guided nucleation of superconductivity in hybrid ferromagnet–superconductor–ferromagnet layered structures. Phys. Rev. Lett. 95, 227003 (2005).

    Article  ADS  Google Scholar 

  113. Villegas, J. E. & Schuller, I. K. Controllable manipulation of superconductivity using magnetic vortices. Supercond. Sci. Technol. 24, 024004 (2011).

    Article  ADS  Google Scholar 

  114. Andreev, A. F. Thermal conductivity of the intermediate state of superconductors. Sov. Phys. JETP 19, 1228–1231 (1964).

    Google Scholar 

  115. Visani, C. et al. Equal-spin Andreev reflection and long-range coherent transport in high-temperature superconductor/half-metallic ferromagnet junctions. Nature Phys. 8, 539–543 (2012).

    Article  ADS  Google Scholar 

  116. Kalcheim, Y. et al. Role of magnetic inhomogeneity in the proximity induced triplet superconductivity at ferromagnet–superconductor interfaces. Phys. Rev. B 89, 180506(R) (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge useful discussions with J. Aarts, M. Alidoust, M. Aprili, A. Balatsky, W. Belzig, F. Bergeret, A. Black-Schaffer, M. Blamire, A. Brataas, A. Buzdin, L. Cohen, M. Cuoco, M. Eschrig, F. Giazotto, G. Halász K. Halterman, I. Kulagina, O. Millo, J. Modera, N. Nagaosa, E. Scheer, A. Sudbø, Y. Tanaka and T. Yokoyama. J.L. was supported by the Research Council of Norway, Grants No. 205591 and 216700. J.W.A.R. was supported by the UK Royal Society and the Leverhulme Trust through an International Network Grant (IN-2013-033).

Author information

Authors and Affiliations

Authors

Contributions

J.L. and J.W.A.R. co-wrote the paper and contributed to all its aspects.

Corresponding authors

Correspondence to Jacob Linder or Jason W. A. Robinson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linder, J., Robinson, J. Superconducting spintronics. Nature Phys 11, 307–315 (2015). https://doi.org/10.1038/nphys3242

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3242

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing