Abstract
Some combinatorial properties of fixed boundary rhombus random tilings with octagonal symmetry are studied. A geometrical analysis of their configuration space is given as well as a description in terms of discrete dynamical systems, thus generalizing previous results on the more restricted class of codimension-one tilings. In particular this method gives access to counting formulas, which are directly related to questions of entropy in these statistical systems. Methods and tools from the field of enumerative combinatorics are used.
Similar content being viewed by others
REFERENCES
D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett. 53:1951 (1984).
R. Penrose, The role of aesthetics in pure and applied mathematical research, Bull. Inst. Math. Appl. 10:226 (1974).
N. Destainville, R. Mosseri, and F. Bailly, Configurational entropy of codimension-one tilings and directed membranes, J. Stat. Phys. 87(3/4):697 (1997).
N. Wang, H. Chen, and K. H. Kuo, Two-dimensional quasicrystal with eightfold rotational symmetry, Phys. Rev. Lett. 59:1010 (1987).
W. Li, H. Park, and M. Widom, Phase diagram of a random tiling quasicrystal, J. Stat. Phys. 66(1/2):1 (1992).
M. Widom, Bethe ansatz solution of the square-triangle random tiling model, Phys. Rev. Lett. 70:2094 (1993).
P. A. Kalugin, The square-triangle random-tiling model in the thermodynamic limit, J. Phys. A: Math. Gen. 27:3599 (1994).
J. de Gier and B. Nienhuis, Exact solution of an octagonal random tiling model, Phys. Rev. Lett. 76:2918 (1996).
J. de Gier and B. Nienhuis, Bethe ansatz solution of a decagonal rectangle-triangle random tiling, J. Phys. A: Math. Gen. 31:2141 (1998).
M. Widom, N. Destainville, R. Mosseri, and F. Bailly, Two-dimensional random tilings of large codimension, in Proceedings of the 6th International Conference on Quasicrystals (World Scientific, 1998).
R. Mosseri and F. Bailly, Configurational entropy in octagonal tiling models, Int. J. Mod. Phys. B 7(6/7):1427 (1993).
V. Elser, Comment on“Quasicrystals: a new class of ordered structures,” Phys. Rev. Lett. 54:1730 (1985).
M. Duneau and A. Katz, Quasiperiodic patterns, Phys. Rev. Lett. 54:2688 (1985).
A. P. Kalugin, A. Y. Kitaev, and L. S. Levitov, Al0.86Mn0.14: A six-dimensional crystal, JETP Lett. 41:145 (1985); A. P. Kalugin, A. Y. Kitaev, and L. S. Levitov, 6-dimensional properties of Al0.86Mn0.14, J. Phys. Lett. France 46:L601 (1985).
N. G. de Bruijn, Algebraic theory of Penrose's non-periodic tilings of the plane, Kon. Nederl. Akad. Wetensch. Proc. Ser. A 43:84 (1981).
N. G. de Bruijn, Dualization of multigrids, J. Phys. France 47:C3-9 (1986).
J. E. S. Socolar, P. J. Steinhardt, and D. Levine, Quasicrystals with arbitrary orientational symmetry, Phys. Rev. B 32(8):5547 (1985).
F. Gähler and J. Rhyner, Equivalence of the generalized grid and projection methods for the construction of quasiperiodic tilings, J. Phys. A: Math. Gen. 19:267 (1986).
V. Elser, Solution of the dimer problem on an hexagonal lattice with boundary, J. Phys. A: Math. Gen. 17:1509 (1984).
R. Mosseri, F. Bailly, and C. Sire, Configurational entropy in random tiling models, J. Non-Cryst. Solids 153-54:201 (1993).
N. Destainville, Ph.D. Thesis: “Entropie configurationnelle des pavages aléatoires et des membranes dirigées,” Thése de l'Université Paris 6 (1997).
N. Destainville, Entropy and boundary conditions in random rhombus tilings, J. Phys. A: Math. Gen. 31:6123 (1998).
G. D. Bailey, Tilings of Zonotopes: Discriminental Arrangements, Oriented Matroids and Enumeration (Minnesota University Thesis, 1997).
H. Cohn, M. Larsen, and J. Propp, The shape of a typical boxed plane partition, New York J. of Math. 4:137 (1998).
H. Cohn, R. Kenyon, and J. Propp, A variational principle for domino tilings, J. of AMS. (to appear).
M. Latapy, Generalized integer partitions, tilings of zonotopes and lattices, preprint.
R. Kenyon, Tilings of polygons with parallelograms, Algorithmica 9, 382 (1993).
S. Elnitsky, Rhombic tilings of polygons and classes of reduced words in Coxeter groups, J. Combinatorial Theory A 77:193 (1997).
R. P. Stanley, Ordered structures and partitions, Memoirs of the AMS 119 (1972).
V. Strehl, Combinatorics of special functions: facets of Brock's identity, in Séries Formelles et Combinatoire Algébrique, P. Leroux and C. Reutanauer, eds. (University of Québec, Montreal, 1992).
C. L. Henley, Relaxation time for a dimer covering with height representation, J. Stat. Phys. 89:483 (1997).
D. Randall and P. Tetali, Analyzing Glauber dynamics by comparison of Markov chains, in Proceedings of the 3rd Latin American Theoretical Informatics Symposium, Springer Lecture Notes in Computer Science, Vol. 1380, p. 292 (1998).
M. Luby, D. Randall, and A. Sinclair, Markov chain algorithms for planar lattice structures, preprint.
D. B. Wilson, Mixing times of lozenge tiling and card shuffling Markov chains, preprint.
R. Mosseri and J.-F. Sadoc, Glass-like properties in quasicrystals, in Proceedings of the 5th International Conference on Quasicrystals, C. Janot and R. Mosseri, eds. (World Scientific, 1995), p. 747.
L. Leuzzi and G. Parisi, A Tiling Model for Glassy Systems, preprint (cond-mat/9911020).
K. J. Strandburg and P. R. Dressel, Thermodynamic behavior of a Penrose-tiling quasicrystal, Phys. Rev. B 41:2469 (1990).
Y. Ishii, Dynamics of phason relaxation on Penrose lattices, in Proceedings of the 5th International Conference on Quasicrystals, C. Janot and R. Mosseri, eds. (World Scientific, 1995), p. 359.
R. P. Stanley, On the number of reduced decompositions of elements of Coxeter groups, European J. of Comb. 5:359 (1984).
P. Edelman and C. Greene, Balanced tableaux, Adv. in Math. 63:42 (1987).
B. E. Sagan, The Symmetric Group (Wadsworth and Brooks, California, 1991).
D. M. Knuth, Axioms and hulls, Lect. Notes in Computer Sci. 606:35 (1992).
A. Young, On quantitative substitutional analysis, Proc. London Math. Soc. 2 28:255 (1927).
C. Greene, A. Nijenhuis, and H. S. Wilf, A probabilistic proof of a formula for the number of Young tableaux of a given shape, Adv. in Math. 31:104 (1979).
I. Gessel and G. Viennot, Binomial determinants, paths and hook lenght formulae, Adv. in Math. 58:300 (1985).
A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G. M. Ziegler, Oriented Matroids (Cambridge University Press, 1993).
B. Sturmfels and G. M. Ziegler, Extention spaces of oriented matroids, Discrete & Computational Geom. 10:23 (1993).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Destainville, N., Mosseri, R. & Bailly, F. Fixed-Boundary Octagonal Random Tilings: A Combinatorial Approach. Journal of Statistical Physics 102, 147–190 (2001). https://doi.org/10.1023/A:1026564710037
Issue Date:
DOI: https://doi.org/10.1023/A:1026564710037