Abstract
We evaluate the applicability of automated molecular docking techniques and quantum mechanical calculations to the construction of a set of structures of enzyme-substrate complexes for use in Comparative binding energy (COMBINE) analysis to obtain 3D structure-activity relationships. The data set studied consists of the complexes of eighteen substrates docked within the active site of haloalkane dehalogenase (DhlA) from Xanthobacter autotrophicus GJ10. The results of the COMBINE analysis are compared with previously reported data obtained for the same dataset from modelled complexes that were based on an experimentally determined structure of the DhlA-dichloroethane complex. The quality of fit and the internal predictive power of the two COMBINE models are comparable, but better external predictions are obtained with the new approach. Both models show a similar composition of the principal components. Small differences in the relative contributions that are assigned to important residues for explaining binding affinity differences can be directly linked to structural differences in the modelled enzyme-substrate complexes: (i) rotation of all substrates in the active site about their longitudinal axis, (ii) repositioning of the ring of epihalohydrines and the halogen substituents of 1,2-dihalopropanes, and (iii) altered conformation of the long-chain molecules (halobutanes and halohexanes). For external validation, both a novel substrate not included in the training series and two different mutant proteins were used. The results obtained can be useful in the future to guide the rational engineering of substrate specificity in DhlA and other related enzymes.
Similar content being viewed by others
References
Ortiz, A.R., Pisabarro, M.T., Gago, F., and Wade, R.C., J. Med. Chem., 38 (1995) 2681.
Ortiz, A.R., Pastor, M., Palomer, A., Cruciani, G., Gago, F., and Wade, R.C., J. Med. Chem., 40 (1997) 1136.
Pastor, M., Perez, C., and Gago, F., J. Mol. Graph. Model., 15 (1997) 364.
Perez, C., Pastor, M., Ortiz, A.R., and Gago, F., J. Med. Chem., 41 (1998) 836.
Lozano, J.J., Pastor, M., Cruciani, G., Gaedt, K., Centeno, N.B., Gago, F., and Sanz, F., J. Comput.-Aid. Mol. Design, 14 (2000) 341.
Tomic, S., Nilsson, L., and Wade, C.R., J. Med. Chem., 43 (2000) 1780.
Cuevas, C., Pastor, M., Perez, C., and Gago, F., Combin. Chem. High Through. Screen., 4 (2001) 627.
Kmunicek, J., Luengo, S., Gago, F., Ortiz, A.R., Wade, R.C., and Damborsky, J., Biochemistry, 40 (2001) 8905.
Wade, R.C. 2001. Derivation of QSARs using 3D structural models of protein-ligand complexes by COMBINE analysis, In Holtje, H.-D. and Sippl, W. (eds.), Rational approaches to drug design: 13th European symposium on Quantitative Structure-Activity Relationships, Prous Science, Barcelona, p. 23.
Wang, T., and Wade, R.C., J. Med. Chem., 44 (2001) 961.
Wang, T., and Wade, R.C., J. Med. Chem., 45 (2002) 4828.
Damborsky, J., Kmunicek, J., Jedlicka, T., Luengo, S., Gago, F., Ortiz, A.R., and Wade, R.C. 2003. Rational re-design of haloalkane dehalogenases guided by comparative binding energy analysis, In Svendsen, A. (ed.), Enzyme functionality: design, engineering and screening, Marcel Dekker, New York, in press.
Verschueren, K.H.G., Seljee, F., Rozeboom, H.J., Kalk, K.H., and Dijkstra, B.W., Nature, 363 (1993) 693.
Newman, J., Peat, T.S., Richard, R., Kan, L., Swanson, P.E., Affholter, J.A., Holmes, I.H., Schindler, J.F., Unkefer, C.J., and Terwilliger, T.C., Biochemistry, 38 (1999) 16105.
Marek, J., Vevodova, J., Kuta-Smatanova, I., Nagata, Y., Svensson, L.A., Newman, J., Takagi, M., and Damborsky, J., Biochemistry, 39 (2000) 14082.
Damborsky, J., and Koca, J., Prot. Engng., 12 (1999) 989.
Schanstra, J.P., Kingma, J., and Janssen, D.B., J. Biol. Chem., 271 (1996) 14747.
Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., and Olson, A.J., J. Comput. Chem., 19 (1998) 1639.
Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E., Nucl. Acid Res., 28 (2000) 235.
Vriend, G., J. Mol. Graphics, 8 (1990) 52.
Case, D.A., Pearlman, D.A., Caldwell, J.W., Cheatham III, T.E., Ross, W.S., Simmerling, C.L., Darden, T.A., Merz, K.M., Stanton, R.V., Cheng, A.L., Vincent, J.J., Crowley, M., Ferguson, D.M., Radmer, R.J., Seibel, G.L., Singh, U.C., Weiner, P.K., and Kollman, P.A. AMBER 5.0, University of California, San Francisco (1997).
Solis, F.J., and Wets, R.J.B., Math. Oper. Res., 6 (1981) 19.
Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., and Kollman, P.A., J. Am. Chem. Soc., 117 (1995) 5179.
Stewart, J.J.P., J. Comput.-Aid. Mol. Design, 4 (1990) 1.
Cernohorsky, M., Kuty, M., and Koca, J., Comp. Chem., 21 (1996) 35.
Damborsky, J., Prokop, M., and Koca, J., Trends Biochem. Sci., 26 (2001) 71.
Damborsky, J., Kuty, M., Nemec, M., and Koca, J., J. Chem. Inf. Comp. Sci., 37 (1997) 562.
Verschueren, K.H.G., Kingma, J., Rozeboom, H.J., Kalk, K.H., Janssen, D.B., and Dijkstra, B.W., Biochemistry, 32 (1993) 9031.
Kennes, C., Pries, F., Krooshof, G.H., Bokma, E., Kingma, J., and Janssen, D.B., Eur. J. Biochem., 228 (1995) 403.
Krooshof, G.H., Ridder, I.S., Tepper, A.W.J.W., Vos, G.J., Rozeboom, H.J., Kalk, K.H., Dijkstra, B.W., and Janssen, D.B., Biochemistry, 37 (1998) 15013.
Schindler, J.F., Naranjo, P.A., Honaberger, D.A., Chang, C.-H., Brainard, J.R., Vanderberg, L.A., and Unkefer, C.J., Biochemistry, 38 (1999) 5772.
Lightstone, F.C., Zheng, Y.-J., Maulitz, A.H., and Bruice, T.C., Proc. Natl. Acad. Sci. USA, 94 (1997) 8417.
Shurki, A., Strajbl, M., Villa, J., and Warshel, A., J. Am. Chem. Soc., 124 (2002) 4097.
Bohac, M., Nagata, Y., Prokop, Z., Prokop, M., Monincova, M., Koca, J., Tsuda, M., and Damborsky, J., Biochemistry, 41 (2002) 14272.
Devi-Kesavan, L.S., and Gao, J., J. Am. Chem. Soc., 125 (2003) 1532.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Kmuníček, J., Boháč, M., Luengo, S. et al. Comparative binding energy analysis of haloalkane dehalogenase substrates: Modelling of enzyme-substrate complexes by molecular docking and quantum mechanical calculations. J Comput Aided Mol Des 17, 299–311 (2003). https://doi.org/10.1023/A:1026159215220
Issue Date:
DOI: https://doi.org/10.1023/A:1026159215220