[go: up one dir, main page]

Skip to main content
Log in

Decoding Temporal Information Through Slow Lateral Excitation in the Olfactory System of Insects

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Sensory information is represented in a spatio-temporal code in the antennal lobe, the first processing stage of the olfactory system of insects. We propose a novel mechanism for decoding this information in the next processing stage, the mushroom body. The Kenyon cells in the mushroom body of insects exhibit lateral excitatory connections at their axons. We demonstrate that slow lateral excitation between Kenyon cells allows one to decode sequences of activity in the antennal lobe. We are thus able to clarify the role of the existing connections as well as to demonstrate a novel mechanism for decoding temporal information in neuronal systems. This mechanism complements the variety of existing temporal decoding schemes. It seems that neuronal systems not only have a rich variety of code types but also quite a diversity of algorithms for transforming different codes into each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahissar E, Haidarliu S, Zacksenhouse M (1997) Decoding temporally encoded sensory input by cortical oscillations and thalamic phase comparators. PNAS 94: 11633-11638.

    Article  PubMed  Google Scholar 

  • Ahissar E, Sosnik R, Haidarliu S (2000) Transformation from temporal to rate coding in a somatosensory thalamocortical pathway. Nature 406: 302-306.

    Article  PubMed  Google Scholar 

  • Bazhenov M, Stopfer M, Rabinovich MI, Abarbanel HDI, Sejnowski T, Laurent G (2001a) Model of cellular and network mechanisms for odor-evoked temporal patterning in the locust antennal lobe. Neuron 30: 569-581.

    Article  PubMed  Google Scholar 

  • Bazhenov M, Stopfer M, Rabinovich MI, Huerta R, Abarbanel HDI, Sejnowski T, Laurent G (2001b) Model of transient oscillatory synchronization in the locust antennal lobe. Neuron 30: 553-567.

    Article  PubMed  Google Scholar 

  • Buonomano DV, Hickmott PW, Merzenich MM (1997) Context-sensitive synaptic plasticity and temporal-to-spatial transformations in hippocampal†slices. PNAS 94: 10403-10408.

    Article  PubMed  Google Scholar 

  • Buonomano DV, Merzenich MM(1995) Temporal information transformed into a spatial code by a neural network with realistic properties. Science 267: 1028-1030.

    PubMed  Google Scholar 

  • de Belle JS, Heisenberg M (1994) Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. Science 263: 692-695.

    PubMed  Google Scholar 

  • Destexhe A, Mainen ZF, Sejnowski TJ (1998) Kinetic models of synaptic transmission. In: C Koch, I Segev, eds. Methods in Neuronal Modeling, 2nd ed., MIT Press, Cambridge, MA. pp. 1-26.

    Google Scholar 

  • Dubnau J, Grady L, Kitamoto T, Tully T (2001) Disruption of neurotransmission in Drosophila mushroom body blocks retrieval but not acquisition of memory. Nature 411: 476-480.

    Article  PubMed  Google Scholar 

  • Fortin NJ, Agster KL, Eichenbaum HB (2002) Critical role of the hippocampus in memory for sequence of events. Nature Neurosci. 5: 458-462.

    PubMed  Google Scholar 

  • Hammer M, Menzel R (1998) Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees. Learn. Mem. 5: 146-156.

    PubMed  Google Scholar 

  • Heisenberg M (2003) Mushroom body memoir: From maps to models. Nat. Rev. Neurosci. 4: 266-275.

    Article  PubMed  Google Scholar 

  • Jeffres LA (1948) A place theory of sound localization. J. Comp. Physiol. Psychol. 41: 35-39.

    Google Scholar 

  • Laurent G (1999) A systems perspective on early olfactory coding. Science 286: 723-728.

    Article  PubMed  Google Scholar 

  • Laurent G, MacLeod K, Wehr M (1998) Spatiotemporal structure of olfactory inputs to the mushroom bodies. Learn. & Mem. 5: 124-132.

    Google Scholar 

  • Laurent G, Stopfer M, Friedrich RW, Rabinovich MI, Abarbanel HDI (2001) Odor encoding as an active, dynamical process: Experiments, computation, and theory. Annu. Rev. Neurosci. 24: 263-297.

    Article  PubMed  Google Scholar 

  • Laurent G, Wehr M, Davidowitz H (1996) Temporal representations of odors in an olfactory network. J. Neurosci. 16: 3837-3847.

    PubMed  Google Scholar 

  • Leibold C, Kempter R, van Hemmen JL (2002) Howspiking neurons give rise to a temporal-feature map: From synaptic plasticity to axonal selection. Phys. Rev. E 65: 051915.

    Article  Google Scholar 

  • Leitch B, Laurent G (1996) GABAergic synapses in the antennal lobe and mushroom body of the locust olfactory system. J. Comp. Neurol. 372: 487-514.

    PubMed  Google Scholar 

  • Lu T, Liang L, Wang X (2001) Temporal and rate representations of time-varying signals in the auditory cortex of awake primates. Nat. Neurosci. 4: 1131-1138.

    Article  PubMed  Google Scholar 

  • Perez-Orive J, Mazor O, Turner GC, Cassenaer S, Wilson RI, Laurent G (2002) Oscillations and sparsening of odor representations in the mushroom body. Science 297: 359-365.

    Article  PubMed  Google Scholar 

  • Rabinovich M, Huerta R, Bazhenov M, Kozlov K, Abarbanel HDI (1998) Computer simulations of stimulus dependent state switching in basic circuits of bursting neurons. Phys. Rev. E 58: 6418.

    Article  Google Scholar 

  • Rabinovich M, Volkovskii A, Lecanda P, Huerta R, Abarbanel HDI, Laurent G (2001) Dynamical encoding by networks of competing neuron groups: Winnerless competition. Phys. Rev. Lett. 87: 068102.

    Article  PubMed  Google Scholar 

  • Rall W (1967) Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic inputs. J. Neurophys. 30: 1138-1168.

    Google Scholar 

  • Rall W (1989) Cable theory for dendritic neurons. In: C Koch, I Segev, eds. Methods in Neuronal Modeling: From Synapses to Networks, MIT Press, Cambridge. pp. 9-62.

    Google Scholar 

  • Reich DS, Mechler F, Purpura KP, Victor JD (2000) Interspike intervals, receptive fields, and information encoding in primary visual cortex. J. Neurosci. 20: 1964-1974.

    PubMed  Google Scholar 

  • Reich DS, Mechler F, Victor JD (2001) Temporal coding of contrast in primary visual cortex: When, what, and why. J. Neurophysiol. 85: 1039-1050.

    PubMed  Google Scholar 

  • Reinagel P, Reid RC (2000) Temporal coding of visual information in the thalamus. J. Neurosci. 20: 5392-5400.

    PubMed  Google Scholar 

  • Stopfer M, Bhagavan S, Smith B, Laurent G (1997) Impaired odor discrimination on desynchronization of odor-encoding neural assemblies. Nature 390: 70-74.

    Article  PubMed  Google Scholar 

  • Stopfer M, Jayaraman V, Laurent G (2003) Spatiotemporal code for odor identity and concentration. In preparation.

  • Strausfeld NJ, Homberg U, Kloppenburg P (2000) Parallel organization in honey bee mushroom bodies by peptidergic Kenyon cells. J. Comp. Neurol. 428: 760.

    Article  Google Scholar 

  • Strausfeld NJ, Li Y (1999) Representation of the calyces in the medial and vertical lobes of cockroach mushroom bodies. J. Comp. Neurol. 409: 626-646.

    Article  PubMed  Google Scholar 

  • Teyke T, Gelperin A (1999) Olfactory oscillations augment odor discrimination not odor identification by Limax CNS. Neuro Report 10: 1061-1068.

    Google Scholar 

  • v. Rullen R, Thorpe SJ (2001) Rate coding versus temporal order coding: What the retinal ganglion cells tell the visual cortex. Neural Comp. 13: 1255-1283.

    Article  Google Scholar 

  • Wallenstein GV, Eichenbaum H, Hasselmo ME (1998) The hippocampus as an associator of discontiguous events. Trends Neurosci. 21: 317-323.

    Article  PubMed  Google Scholar 

  • Wehr M, Laurent G (1996) Odor encoding by temporal sequences of firing in oscillating neural assemblies. Nature 384: 162-166.

    Article  PubMed  Google Scholar 

  • Wehr M, Laurent G (1999) Relationship between afferent and central temporal patterns in the locust olfactory system. J. Neurosci. 19: 381-390.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowotny, T., Rabinovich, M.I., Huerta, R. et al. Decoding Temporal Information Through Slow Lateral Excitation in the Olfactory System of Insects. J Comput Neurosci 15, 271–281 (2003). https://doi.org/10.1023/A:1025825111088

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025825111088

Navigation