[go: up one dir, main page]

Skip to main content
Log in

Aggression and the Three Opioid Families (Endorphins, Enkephalins, and Dynorphins) in Mice

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Previous studies suggest that brain opioid activity decreases aggression in animal models. The main objective of the current study was to examine the possible genetic relationship between intermale aggression and brain levels of enkephalins, endorphins, and dynorphins in 11 inbred strains of mice. Pursuit, rattling, and attack behaviors were observed in a dyadic encounter with a standard opponent. It appeared that, as expected, enkephalins and endorphins were always negatively correlated with aggression scores. The findings indicate that brain Met5 -enkephalin levels were significantly and highly positively correlated with attack latency. Brain adrenocorticotrophic hormone (ACTH) and β-endorphin levels were significantly and negatively correlated with the number of rattlings, which is consistent with the hypothesis that rattling is a stress-related behavior. In contrast with Met5-enkephalin, ACTH and β-endorphin, the correlations between dynorphin A and aggression scores were nonsignificant and very low. These preliminary results suggest that common genetic sources of variation contribute to differences between the 11 inbred strains in both endogenous opioidergic systems and intermale aggression. Further studies are required to confirm the genetic relationship between offensive aggression and brain enkephalins and endorphins and to better understand the mechanisms underlying the role of endogenous opioids in offensive aggression with regard to opioid receptor activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angelogianni, P., and Gianoulakis, C. (1989). Ontogeny of the β-endorphin response to stress in the rat: Role of the pituitary and the hypothalamus. Neuroendocrinology 50: 372-381.

    Google Scholar 

  • Avis, H. H., and Peeke, H. V. S. (1975). Differentiation by morphine of two types of aggressive behavior in the convict cichlid (Cichlasoma nigrofasciatum). Psychopharmacologia 43: 287-288.

    Google Scholar 

  • Becker, A., Schröder, H., Brosz, M., Grecksch, G., and Schneider-Stock, R. (1997). Differences between two substrains of AB mice in the opioid system. Pharmacol. Biochem. Behav. 58: 763-766.

    Google Scholar 

  • Berman, M., Taylor, S., and Marged, B. (1993). Morphine and human aggression. Addict. Behav. 18: 263-268.

    Google Scholar 

  • Blanchard, D. C., and Blanchard, R. J. (1988). Ethoexperimental approaches to the biology of emotion. Ann. Rev. Psychol. 39: 43-68.

    Google Scholar 

  • Brandão, M. L., Anseloni, V. Z., Pandossio, J. E., De Araujo, J. E., and Castilho, V. M. (1999). Neurochemical mechanisms of the defensive behavior in the dorsal midbrain. Neurosci. Biobehav. Rev. 23: 863-875.

    Google Scholar 

  • Carlier, M., and Roubertoux, P. L. (1986). Differences between CBA/A and NZB/mice on intermale aggression. In J. Medioni and G. Vaysse (Eds.), Genetic approaches to behaviour (pp. 47-57). Readings from the 19th International Ethological Conference, Privat, IEC/Université Paul Sabatier, Toulouse.

    Google Scholar 

  • Carlier, M., Roubertoux, P. L., and Pastoret, C. (1991). The Y chromosome effect on intermale aggression in mice depends on the maternal environment. Genetics 129: 231-236.

    Google Scholar 

  • Colas-Linhart, N., Barbu, M., Petiet, A., Chretien, M., Seidah, N. G., and Bok, B. (1982). Cerebrospinal fluid β-endorphin radioimmunoassay: Methodological problems. In Radioimmunoassay and related procedures in medicine (pp. 319-325). Vienne: IAEA.

    Google Scholar 

  • Colas-Linhart, N., Perdrisot, R., Petiet, A., and Bok, B. (1986). Un dosage radioimmunologique de beta-endorphine: études de spécificité. Biophys. Biomec. 10: 131-134.

    Google Scholar 

  • Dhawan, B. N., Cesselin, F., Raghebir, R., Reisine, T., Bradley, P. B., Portoghese, P. S., and Hamon, M. (1996). International union of pharmacology. XII. Classification of opioid receptors. Pharmacol. Rev. 48: 567-592.

    Google Scholar 

  • Dyakonova, V., Schurmann, F. W., and Sakharov, D. A. (2000). Social aggressiveness of female and subordinate male crickets is realeased by opiate receptor antagonist. Acta Biol. Hung. 51: 363-367.

    Google Scholar 

  • Dyakonova, V., Schurmann, F. W., and Sakharov, D. A. (2002). Effects of opiate ligands on intraspecific aggression in crickets. Peptides 23: 835-841.

    Google Scholar 

  • Emley, G. S., and Hutchinson, R. R. (1983). Unique influences of ten drugs upon post-chock biting attack and pre-shock manual responding. Pharmacol. Biochem. Behav. 19: 5-12.

    Google Scholar 

  • Espert, R., Navarro, J. F., Salvador, A., and Simon, V. M. (1993). Effects of morphine hydrochloride on social encounters between male mice. Aggress. Behav. 19: 377-383.

    Google Scholar 

  • Fischer, H. S., Zernig, G., Schuligoi, R., Miczek, K. A., Hauser, K. F., Gerard, C., and Saria, A. (2000). Alterations within the endogenous opioid system in mice with targeted deletion of the neutral endopeptidase (enkephalinase) gene. Regul. Pept. 96: 53-58.

    Google Scholar 

  • Ginsburg, B. E., and Allee, W. C. (1942). Some effects on conditioning on social dominance and subordination in inbred strains of mice. Physiol. Zool. 15: 485-506.

    Google Scholar 

  • Haney, M., and Miczek, K. A. (1989). Morphine effects on maternal aggression, pup care and analgesia in mice. Psychopharmacology 98: 68-74.

    Google Scholar 

  • Ibarra, P., Bruehl, S. P., McCubbin, J. A., Carlson, C. R., Wilson, J. F., Norton, J. A., and Montgomery, T. B. (1994). An unusual reaction to opioid blockade with naltrexone in a case of posttraumatic stress disorder. J. Traum. Stress 7: 303-309.

    Google Scholar 

  • Janssen, P. A., Jagueneau, A. H., and Niemegeers, J. E. (1960). Effects of various drugs on isolation-induced fighting behavior of male mice. J. Pharmacol. Experim. Therap. 129: 471-475.

    Google Scholar 

  • Kinsley, C. H., and Bridges, R. S. (1986). Opiate involvement in postpartum aggression in rats. Pharmacol. Biochem. Behav. 25: 1007-1011.

    Google Scholar 

  • Kjaer, A., Knigg, U., Bach, F. W., and Warberg, J. (1992). Histamine-and stress-induced secretion of ACTH and β-endorphin: Involvement of corticotropin-releasing hormone and vasopressin. Neuroendocrinology 56: 419-428.

    Google Scholar 

  • König, M., Zimmer, A. M., Steiner, H., Holmes, P. V., Crawley, J. N., Brownstein, M. J., and Zimmer, A. (1996). Pain responses, anxiety and aggression in mice deficient in pre-proenkephalin. Nature 383: 535-538.

    Google Scholar 

  • Lal, H., Gianutsos, G., and Surendra, K. P. (1975). A comparison of narcotic analgesics with neuroleptics on behavioral measures of dopaminergic activity. Life Sci. 17: 29-34.

    Google Scholar 

  • Le Roy, I., Mortaud, S.,Tordjman, S., Donsez-Darcel, E., Carlier, M., Degrelle, H., and Roubertoux, P. L. (1999). Correlation between expression of the steroid sulfatase gene, mapped on the pairing region of the Y-chromosome, and initiation of attack behavior in mice. Behav. Genet. 29: 131-136.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275.

    Google Scholar 

  • Malin, D. H., Layng, M. P., Swank, P., Baker, M. J., and Hood, J. L. (1982). Behavioral alterations produced by chronic naloxone injections. Pharmacol. Biochem. Behav. 17: 389-392.

    Google Scholar 

  • Miczek, K. A. (1987). The psychopharmacology of aggression. In L. L. Iversen, S. D. Iversen, and S. H. Snyder (Eds.), Handbook of psychopharmacology (Vol. 19; pp. 183-328). New York: Plenum.

    Google Scholar 

  • Miczek, K. A., and Thompson, M. L. (1984). Analgesia resulting from defeat in a social confrontation: The role of endogenous opioids in brain. In R. Bandler (Ed.), Modulations of sensorimotor activity during alterations in behavioral states (pp. 431-456). New York: Alan R. Liss.

    Google Scholar 

  • Miner, L. L., Elmer, G. I., Pieper, J. O., and Marley, R. J. (1993). Aggression modulates genetic influences on morphine analgesia as assessed using a classical mendelian cross analysis. Psychopharmacology 111: 17-22.

    Google Scholar 

  • Pohl, M., Benoliel, J. J., Bourgoin, S., Lombard, M. C., Mauborgne, A., Taquet, H., Carayon, A., Besson, J. M., Cesselin, F., and Hamon, M. (1990). Regional distribution of calcitonin gene-related peptide-, substance P-, cholecystokinin-, Met5-enkephalin-, and dynorphin A (1–8)-like materials in the spinal cord and dorsal root ganglia of adult rats: Effects of dorsal rhizotomy and neonatal capsaincin. J. Neurochem. 55: 1122-1129.

    Google Scholar 

  • Poshivalov, V. P. (1982). Ethological analysis of neuropeptides and psychotropic drugs: Effects of intraspecies aggression and sociability in isolated mice. Aggress. Behav. 8: 355-369.

    Google Scholar 

  • Puglisi-Allegra, S. A., Mele, A., and Cabib, S. (1984). Involvement of endogenous opioid systems in social behavior of individually housed mice. In K. A. Miczek, M. R. Kruh, and B. Olivier (Eds.), Ethopharmacological aggression research (pp. 209-225). New York: Alan R. Liss.

    Google Scholar 

  • Roubertoux, P. L., Le Roy, I., Mortaud, S., Perez-Diaz, F., and Tordjman, S. (1999). Measuring aggression in the mouse. In W. E. Crusio and R. T. Gerlai (Eds.), Handbook of molecular-genetic techniques for brain and behavior research (Vol. 13: Techniques in the Behavioral and Neural Science; pp. 696-709). Amsterdam: Elsevier.

    Google Scholar 

  • SAS Institute, Inc. (1987). SAS/STAT guide for personal computers, version 6 edition. Cary, NC: SAS Institute Inc.

    Google Scholar 

  • Shaikh, M. B., Dalsass, M., and Siegel, A. (1990). Opioidergic mechanism mediating aggressive behavior in the cat. Aggress. Behav. 16: 191-206.

    Google Scholar 

  • Shaikh, M. B., Lu, C. L., and Siegel, A. (1991). An enkephalinergic mechanism involved in amygdaloid suppression of affective defence behavior elicited from the midbrain periaqueductal gray in the cat. Brain Res. 559: 109-117.

    Google Scholar 

  • Siegel, S. (1956). Nonparametric staistics for the behavioral sciences (p. 312). New York: McGraw-Hill.

    Google Scholar 

  • Southwick, C. H., and Clark, L. (1968). Interstrain differences in aggressive behavior and exploratory activity of inbred mice. Comm. Behav. Biol. Part A 1: 49-59.

    Google Scholar 

  • Spiga, R., Cherek, D. R., Roache, J. D., and Cowan, K. A. (1990). The effects of codeine on human aggressive responding. Int. Clin. Psychopharmacol. 5: 195-204.

    Google Scholar 

  • Stolerman, I. P., Johnson, C. A., Bunker, P., and Jarvik, M. E. (1975). Weight loss and shock-elicited aggression as indices of morphine abstinence in rats. Psychopharmacologia 45: 157-161.

    Google Scholar 

  • Suzuki, T., Shimada, M., Yoshii, T., Uesugi, J., and Yanaura, S. (1983). Development of physical dependence on and tolerance to morphine in rats treated with morphine-admixed food. Prog. Neuropsychopharmacol. Biol. Psychiatry 7: 63-71.

    Google Scholar 

  • Tidey, J. W., and Miczek, K. A. (1992a). Heightened aggressive behavior during morphine withdrawal: Effects of d-amphetamine. Psychopharmacology 107: 297-302.

    Google Scholar 

  • Tidey, J. W., and Miczek, K. A. (1992b). Morphine withdrawal aggression: Modification with D1 and D2 receptor agonists. Psychopharmacology 108: 177-184.

    Google Scholar 

  • Tordjman, S., Roubertoux, P. L., Carlier, M., Moutier, R., Anderson, G., Launay, J.-M., and Degrelle, H. (1995). Linkage between brain serotonin concentration and the sex-specific part of the Y-chromosome in mice. Neurosci. Lett. 183: 190-192.

    Google Scholar 

  • Virkkunen, M., Rawlings, R., Tokola, R., Poland, R. E., Guidotti, A., Nemeroff, C., Bissette, G., Kalogeras, K., Karonen, S. L., and Linnoila, M. (1994). CSF biochemistries, glucose metabolism, and diurnal activity rythms in alcoholic, violent offenders, fire setters, and healthy volunteers. Arch. Gen. Psychiatry 51: 20-27.

    Google Scholar 

  • Weiner, S., Shaikh, M. B., Shaikh, A. B., and Siegel, A. (1991). Enkephalinergic involvement in periaqueductal gray control of hypothalamically elicited predatory attack in the cat. Physiol. Behav. 49: 1099-1105.

    Google Scholar 

  • Yen-Koo, H. C., Tocus, E. C., and Balazs, T. (1989). The effects of chronic treatment and withdrawal of CNS depressants on aggressive behavior. Toxicol. Ind. Health 5: 953-956.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tordjman, S., Carlier, M., Cohen, D. et al. Aggression and the Three Opioid Families (Endorphins, Enkephalins, and Dynorphins) in Mice. Behav Genet 33, 529–536 (2003). https://doi.org/10.1023/A:1025774716976

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025774716976

Navigation