[go: up one dir, main page]

Skip to main content
Log in

Homogenization of parabolic equations an alternative approach and some corrector-type results

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

We extend and complete some quite recent results by Nguetseng [Ngu1] and Allaire [All3] concerning two-scale convergence. In particular, a compactness result for a certain class of parameterdependent functions is proved and applied to perform an alternative homogenization procedure for linear parabolic equations with coefficients oscillating in both their space and time variables. For different speeds of oscillation in the time variable, this results in three cases. Further, we prove some corrector-type results and benefit from some interpolation properties of Sobolev spaces to identify regularity assumptions strong enough for such results to hold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Adams: Sobolev Spaces. Academic Press, New York. 1975.

    Google Scholar 

  2. G. Allaire: Two-scale convergence and homogenization of periodic structures. School on homogenization, ICTP, Trieste, September 6–17. 1993.

    Google Scholar 

  3. G. Allaire: Homogenization of the unsteady Stokes equation in porous media. Progress in pdes: calculus of variation, applications, Pitman Research notes in mathematics Series 267 (C. Bandle et al., eds.). Longman Higher Education, New York, 1992.

    Google Scholar 

  4. G. Allaire: Homogenization and two-scale convergence. SIAM Journal of Mathematical Analysis, 23 (1992), no. 6, 1482–1518.

    Google Scholar 

  5. H. W. Alt: Lineare Funktionalanalysis. Springer-Verlag, 1985.

  6. H. Attouch: Variational Convergence of Functions and Operators. Pitman Publishing Limited, 1984.

  7. A. Bensoussan, J. L. Lions, G. Papanicolau: Asymptotic Analysis for Periodic Structures. Studies in Mathematics and its Applications, North-Holland, 1978.

  8. J. Bergh, J. Löfström: Interpolation Spaces. An Introduction. Grundlehren der mathematischen Wissenschaft, Springer-Verlag, 1976.

  9. S. Brahim-Otsmane, G. Francfort, F. Murat: Correctors for the homogenization of the wave and heat equation. J. Math. Pures Appl 9 (1992).

  10. P. Constantin, C. Foiaş: Navier-Stokes equations. The University of Chicago Press, Chicago, 1989.

    Google Scholar 

  11. G. Dal Maso: An introduction to Γ-convergence. Progress in Nonlinear Differential Equations and their Applications, Volume 8, Birkhäuser Boston. 1993.

  12. A. Defranceschi: An introduction to homogenization and G-convergence. School on homogenization, ICTP, Trieste, September 6–17, 1993.

    Google Scholar 

  13. R. E. Edwards: Functional Analysis. Holt, Rinehart and Winston, New York, 1965.

    Google Scholar 

  14. A. Holmbom, N. Wellander: Some results for periodic and non-periodic two-scale convergence. Working paper No. 33 University of Gävle/Sandviken, 1996.

  15. A. Kufner: Function Spaces. Nordhoff International, Leyden, 1977.

    Google Scholar 

  16. J. L. Lions, E. Magenes: Non Homogeneous Boundary Value problems and Applications II. Springer-Verlag, Berlin, 1972.

    Google Scholar 

  17. A. K. Nandakumaran: Steady and evolution Stokes equations in a porous media with Non-homogeneous boundary data. A homogenization process. Differential and Integral Equations 5 (1992), no. 1, 73–93.

    Google Scholar 

  18. G. Nguetseng: A general convergence result for a functional related to the theory of homogenization. SIAM Journal of Mathematical Analysis 20 (1989), no. 3, 608–623.

    Google Scholar 

  19. G. Nguetseng: Thèse d'Etat. Université Paris 6, 1984.

  20. L. E. Persson, L. Persson, J. Wyller, N. Svanstedt: The Homogenization Method—An Introduction. Studentlitteratur Publishing, 1993.

  21. E. Sanchez-Palencia: Non-Homogeneous Media and Vibration Theory. Springer Verlag, 1980.

  22. R. Temam: Navier Stokes Equation. North-Holland, 1984.

  23. E. Zeidler: Nonlinear Functional Analysis and its Applications II. Springer Verlag, 1990.

  24. W. Ziemer: Weakly Differentiable Functions. Springer Verlag, 1989.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by The Swedish Research Council for the Engineering Sciences (TFR), The Swedish National Board for Industrial and Technological Development (NUTEK), and The Country of Jämtland Research Foundation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holmbom, A. Homogenization of parabolic equations an alternative approach and some corrector-type results. Applications of Mathematics 42, 321–343 (1997). https://doi.org/10.1023/A:1023049608047

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023049608047

Navigation