[go: up one dir, main page]

Skip to main content
Log in

Kinetic Theory of Quantum Electrodynamic Plasma in a Strong Electromagnetic Field: I. The Covariant Formalism

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We present a covariant approach to the kinetic theory of quantum electrodynamic plasma in a strong electromagnetic field. The method is based on the relativistic von Neumann equation for the nonequilibrium statistical operator defined on spacelike hyperplanes in Minkowski space. We use the canonical quantization of the system on hyperplanes and a covariant generalization of the Coulomb gauge. The condensate mode associated with the mean electromagnetic field is separated from the photon degrees of freedom by a time-dependent unitary transformation of the dynamic variables and the nonequilibrium statistical operator. This allows using expansions of correlation functions and of the statistical operator in powers of the fine structure constant even in the presence of a strong electromagnetic field. We present a general scheme for deriving kinetic equations in the hyperplane formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Sprangle, A. Esarey, and A. Ting, Phys. Rev. Lett., 64, 2011 (1990).

    Google Scholar 

  2. P. Gibbon and E. Förster, Plasma Phys. Control. Fusion, 38, 769 (1996).

    Google Scholar 

  3. T. Brabec and F. Krausz, Rev. Modern Phys., 72, 545 (2000).

    Google Scholar 

  4. S. R. de Groot, W. A. van Leeuwen, and C. G. Weert, Relativistic Kinetic Theory, North-Holland, Amsterdam (1980).

    Google Scholar 

  5. P. Carruthers and F. Zachariasen, Rev. Modern Phys., 55, 245 (1983).

    Google Scholar 

  6. D. Vasak, M. Gyulassy, and H.-T. Elze, Ann. Physics, 173, 462 (1987).

    Google Scholar 

  7. I. Bialynicki-Birula, P. Górnicki, and J. Rafelski, Phys. Rev. D, 44, 1825 (1991).

    Google Scholar 

  8. P. Zhuang and U. Heinz, Phys. Rev. D, 57, 6525 (1998).

    Google Scholar 

  9. S. Ochs and U. Heinz, Ann. Physics, 266, 351 (1998).

    Google Scholar 

  10. P. Lipavský, V. Špička, and B. Velický, Phys. Rev. B, 34, 6933 (1986).

    Google Scholar 

  11. B. Bezzerides and D. F. DuBois, Ann. Physics, 70, 10 (1972).

    Google Scholar 

  12. N. N. Bogoliubov, Dokl. Akad. Nauk SSSR, 81, 757 (1951).

    Google Scholar 

  13. G. N. Fleming, Phys. Rev. B, 137, 188 (1965).

    Google Scholar 

  14. G. N. Fleming, J. Math. Phys., 7, 1959 (1966).

    Google Scholar 

  15. J. M. Jauch and F. Rohrlich, The Theory of Photons and Electrons, Springer, New York (1976).

    Google Scholar 

  16. C. G. van Weert, Ann. Physics, 140, 133 (1982).

    Google Scholar 

  17. S. S. Schweber, An Introduction to Relativistic Quantum Field Theory, Harper and Row, New York (1961).

    Google Scholar 

  18. D. N. Zubarev, V. G. Morozov, and G. Röpke, Statistical Mechanics of Nonequilibrium Processes, Vol. 1, Akad. Verlag, Berlin (1996).

    Google Scholar 

  19. W. Greiner and J. Reinhardt, Field Quantization, Springer, Berlin (1996).

    Google Scholar 

  20. P. A. M. Dirac, Canad. J. Math., 2, 129 (1950).

    Google Scholar 

  21. S. Weinberg, The Quantum Theory of Fields, Vol. 1, Cambridge Univ. Press, Cambridge (1996).

    Google Scholar 

  22. F. J. Belinfante, Phys., 6, 887 (1939).

    Google Scholar 

  23. V. G. Morozov and G. Röpke, J. Statist. Phys., 102, 285 (2001).

    Google Scholar 

  24. P. Danielewicz, Ann. Physics, 152, 239 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morozov, V.G., Röpke, G. & Höll, A. Kinetic Theory of Quantum Electrodynamic Plasma in a Strong Electromagnetic Field: I. The Covariant Formalism. Theoretical and Mathematical Physics 131, 812–831 (2002). https://doi.org/10.1023/A:1015979524409

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015979524409

Navigation