[go: up one dir, main page]

Skip to main content
Log in

Numerical Simulation on Blast Furnace Operation with Hot Burden Charging

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Blast furnace operation with hot burden charging was numerically simulated to preliminarily analyze its advantages and disadvantages. Multi-fluid blast furnace model was utilized to simulate hot burden charging operations under the conditions that the charging temperatures of pellet and coke were supposed separately or simultaneously as 800 °C. The results showed that, with hot burden charging, the furnace top temperature significantly increased in comparison to the conventional operation with cold burden charging. However, in-furnace temperature decreased, which decelerated the reduction rate of ferrous burdens. The concentrations of reducing gases were decreased in the furnace. The height of cohesive zone shifted downwards. When the charging temperatures of pellet and coke were simultaneously 800 °C (PC800), coke rate, fuel rate and carbon emission rate were decreased by 13.4, 22.1 and 19.25 kg · t−1, respectively. The ratio of ore to coke, solid burden charging rate and hot metal productivity were increased by 4.79%, 7.55 kg · s−1 and 38%, respectively. Heat taken away by top gas and energy consumption per ton hot metal were increased by 68.97% and 6.40%, respectively. Generaly speaking, hot burden charging was adverse to energy utilization of blast furnace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Find the latest articles, discoveries, and news in related topics.

References

  1. Y. S. Zhou, H. Qian, Y. P. Zhang, Z. Y. Li, J. F. Fan, Iron and Steel 44 (2009) No. 2, 1–10.

    Google Scholar 

  2. T. J. Yang, J. L. Zhang, H. B. Zuo, China Metalurgy 20 (2010) No. 7, 1–7.

    Google Scholar 

  3. L. Li, Process Model for Oxygen-Genriched Blast Furnace with Hot Charging and Coke Oven Gas Blowing, Northeastern University, Shenyang, 2012.

    Google Scholar 

  4. Baosteel News Centre, Baosteel Technology Undertakes National Science and Technology Support Project the 1st Time, Baosteel News, Shanghai, 2011-10-25, htp://www.baosteel.com/group_en/contents/2863/38829.html.

    Google Scholar 

  5. M. S. Chu, J. I. Yagi, Steel Res. Int. 81 (2010) 1043–1050.

    Article  Google Scholar 

  6. H. Nogami, M S. Chu, J. I. Yagi, Revue de Métalurgie 102 (2005) 189–197.

    Article  Google Scholar 

  7. H. Hele, M. Hele, H. Saxen, F. Petersson, ISIJ Int. 50 (2010) 931–938.

    Article  Google Scholar 

  8. G. Q. Zuo, H. Alexandra, Revue de Métalurgie 106 (2009) 387–392.

    Article  Google Scholar 

  9. R. Z. Lan, J. S. Wang, Y. H. Han, X. F. She, L. T. Wang, Q. G. Xue, J. Iron Steel Res. Int. 19 (2012) No. 9, 13–19.

    Article  Google Scholar 

  10. T. L. Guo, M. S. Chu, Z G. Liu, J. Tang, J. I. Yagi, Steel Res. Int. 84 (2013) 333–343.

    Article  Google Scholar 

  11. A. Babich, S. Yaroshevskll, A. Formoso, A. Cores, L. Garcia, V. Nozdrachev, ISIJ Int. 39 (1999) 229–238.

    Article  Google Scholar 

  12. H. Nogami, J. I. Yagi, S. Y. Kitamura, P. R. Austin, ISIJ Int. 46 (2006) 1759–1766.

    Article  Google Scholar 

  13. J. L. Meng, Z. C. Guo, H. Q. Tang, Adv. Mater. Res. 567 (2012) 178–186.

    Article  Google Scholar 

  14. M. A. Tseitlin, S. E. Lazutkin, G. M. Styopin, ISIJ Int. 34 (1994) 570–573.

    Article  Google Scholar 

  15. Y. H. Qi, D. L. Yan, J. J. Gao, J. C. Zhang, K. M. Li, Iron and Steel 46 (2011) No. 3, 6–8.

    Google Scholar 

  16. L. Zhang, G. W. Wang, J. G. Shao, Y. X. Chen, T. J. Yang, J. Iron Steel Res. Int. 20 (2013) No. 3, 1–5.

    Google Scholar 

  17. T. L. Guo, Z. G. Liu, M. S. Chu, J. Northeast. Univ. Nat Sci. 33 (2012) 987–991.

    Google Scholar 

  18. J. I. Yagi, ISIJ Int. 991 (1993) 619–639.

    Article  Google Scholar 

  19. P. R. Austin, H. Nogami, J. I. Yagi, ISIJ Int. 37 (1997) 748–755.

    Article  Google Scholar 

  20. J. F. Thompson, Z. U. Warsi, C. W. Mastin, Numerical Grid Generation Foundations and Applications, North-Holand, New York, 1985.

    MATH  Google Scholar 

  21. S. V. Patankar, D B. Spalding, Int. J. Heat Mass Transfer 15 (1972) 1787–1806.

    Article  Google Scholar 

  22. M. S. Chu, Study on Super High Eficiency Operations of Blast Furnace based on Multi-fluid Model, Tohoku University, Sendai, Japan, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man-sheng Chu.

Additional information

Foundation Item: Item Sponsored by National Natural Science Foundation of China (50804008); Program for New Century Excellent Talents in University of China (NCET-08-0099)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Tl., Chu, Ms., Liu, Zg. et al. Numerical Simulation on Blast Furnace Operation with Hot Burden Charging. J. Iron Steel Res. Int. 21, 729–736 (2014). https://doi.org/10.1016/S1006-706X(14)60134-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(14)60134-5

Key words

Navigation