[go: up one dir, main page]

Skip to main content
Log in

New Divergence and Entropy Measures for Intuitionistic Fuzzy Sets on Edge Detection

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Edges of the image play an important role in the field of digital image processing and computer vision. The edges reduce the amount of data, extract useful information from the image and preserve significant structural properties of an input image. Further, these edges can be used for object and facial expression detection. In this paper, we will propose new intuitionistic fuzzy divergence and entropy measures with its proof of validity for intuitionistic fuzzy sets. A new and significant technique has been developed for edge detection. To check the robustness of the proposed method, obtained results are compared with Canny, Sobel and Chaira methods. Finally, mean square error (MSE) and peak signal-to-noise ratio (PSNR) have been calculated and PSNR values of proposed method are always equal or greater than the PSNR values of existing methods. The detected edges of the various sample images are found to be true, smooth and sharpen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Abdallah, A.A., Ayman, A.A.: Edge detection in digital images using fuzzy logic technique. World Acad. Sci. Eng. Technol. 51, 178–186 (2009)

    Google Scholar 

  2. Ansari, M.D., Singh, G., Singh, A., Kumar, A.: An efficient salt and pepper noise removal and edge preserving scheme for image restoration. Int. J. Comput. Technol. Appl. 3(5), 1848–1854 (2012)

    Google Scholar 

  3. Ansari, M.D., Ghrera, S.P., Tyagi, V.: Pixel-based image forgery detection: a review. IETE J. Educ. 55(1), 40–46 (2014)

    Article  Google Scholar 

  4. Ansari, M.D., Ghrera, S.P.: Intuitionistic fuzzy local binary pattern for features extraction. Int. J. Inf. Commun. Technol. (2017). doi:10.1504/IJICT.2018.10005094

  5. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)

    Article  MATH  Google Scholar 

  6. Chaira, T., Ray, A.K.: A new measure using intuitionistic fuzzy set theory and its application to edge detection. Appl. Soft Comput. 8(2), 919–927 (2008)

    Article  Google Scholar 

  7. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)

    Article  Google Scholar 

  8. De Luca, A., Termini, S.: A definition of nonprobabilistic entropy in the setting of fuzzy theory. Int. J. Gen. Syst. 5, 301–312 (1972)

    MathSciNet  MATH  Google Scholar 

  9. De, S.K., Biswas, R., Roy, A.R.: Some operations on intuitionistic fuzzy sets. Fuzzy Sets Syst. 114(3), 477–484 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hooda, D.S., Mishra, A.R.: On trigonometric fuzzy information measures. ARPN J. Sci. Technol. 5, 145–152 (2015)

    Google Scholar 

  11. Hung, W.L., Yang, M.S.: Fuzzy entropy on intuitionistic fuzzy sets. Int. J. Intell. Syst. 21, 443–451 (2006)

    Article  MATH  Google Scholar 

  12. Kenneth, H.L., Ohnishi, N.H.: FEDGE-fuzzy edge detection by fuzzy categorization and classification of edges. In: International Workshops on Fuzzy Logic Artificial Intelligence, pp. 182–196. Springer, Berlin (1995)

  13. Lin, J.: Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theory 37(1), 145–151 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lopera, G.J., Ilhami, N., Escamilla, P. L., Aroza, J. M., Rolda’n, R. R.: Improved entropic edge detection. In: proceedings of the 10th international Conference of Image Analysis and Processing, Venice, Italy, pp. 180–184 (1999)

  15. Mao, J., Dengbao, Y., Cuicui, W.: A novel cross-entropy and entropy measures of IFSs and their applications. Knowl.-Based Syst. 48, 37–45 (2013)

    Article  Google Scholar 

  16. Marr, D., Hildreth, E.: Theory of edge detection. Proc. R. Soc. Lond. B: Biol. Sci. 207(1167), 187–217 (1980)

    Article  Google Scholar 

  17. Melin, P., Gonzalez, C.I., Castro, J.R., Mendoza, O., Castillo, O.: Edge detection method for image processing based on generalized type-2 fuzzy logic. IEEE Trans. Fuzzy Syst. 22(6), 1515–1525 (2014)

    Article  Google Scholar 

  18. Mishra, A.R., Jain, D., Hooda, D.S.: Intuitionistic fuzzy similarity and information measures with physical education teaching quality assessment. In: Proceeding of IC3T, Springer- Advances in Intelligent Systems and Computing. vol. 379, pp. 387–399 (2016)

  19. Mishra, A.R., Jain, D., Hooda, D.S.: Exponential intuitionistic fuzzy information measure with assessment of service quality. Int. J. Fuzzy Syst. 19(3), 788–798 (2017)

    Article  MathSciNet  Google Scholar 

  20. Mishra, A.R., Rani, P.: Shapley divergence measures with VIKOR method for multi-attribute decision making problems. Neural Comput. Appl. (2017). doi:10.1007/s00521-017-3101-x

  21. Mishra, A.R., Hooda, D.S., Jain, D.: Weighted trigonometric and hyperbolic fuzzy information measures and their applications in optimization principles. Int. J. Comput. Math. Sci. 03, 62–68 (2014)

    Google Scholar 

  22. Mishra, A.R., Hooda, D.S., Jain, D.: On exponential fuzzy measures of information and discrimination. Int. J. Comput. Appl. 119, 01–07 (2015)

    Google Scholar 

  23. Mishra, A.R., Jain, D., Hooda, D.S.: On fuzzy distance and induced fuzzy information measures. J. Inf. Optim. Sci. 37(2), 193–211 (2016)

    MathSciNet  Google Scholar 

  24. Mishra, A.R., Rani, P., Jain, D.: Information measures based TOPSIS method for multicriteria decision making problem in intuitionistic fuzzy environment. Iran. J. Fuzzy Syst. (In press)

  25. Mishra, A.R., Jain, D., Hooda, D.S.: On logarithmic fuzzy measures of information and discrimination. J. Inf. Optim. Sci. 37(2), 213–231 (2016)

    MathSciNet  Google Scholar 

  26. Mishra, A.R.: Intuitionistic fuzzy information with application in rating of township development. Iran. J. Fuzzy Syst. 13, 49–70 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Nadernejad, E., Sharifzadeh, S., Hassanpour, H.: Edge detection techniques: evaluations and comparison. Appl. Math. Sci. 2(31), 1507–1520 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Prewitt, J.M.: Object enhancement and extraction. Pict. Process. Psychopict. 10(1), 15–19 (1970)

    Google Scholar 

  29. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948)

  30. Szmidt, E., Kacprzyk, J.: Entropy for intuitionistic fuzzy sets. Fuzzy Sets Syst. 118, 467–477 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sobel, I., Feldman, G.: A \(3\times 3\) isotropic gradient operator for image processing. Presented at the Stanford artificial intelligence project (SAIL), 1968

  32. Tao, T.W., Thomson, W.E.: A fuzzy IF-THEN approach to edge detection. In: Proceedings of the 2nd IEEE International Conference on Fuzzy Systems, pp. 1356–1360 (1993)

  33. Valipour, M., Banihabib, M.E., Behbahani, S.M.R.: Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J. Hydrol. 476, 433–441 (2013)

    Article  Google Scholar 

  34. Valipour, M.: Global experience on irrigation management under different scenarios. J. Water Land Dev. 32(1), 95–102 (2017)

    Article  MathSciNet  Google Scholar 

  35. Valipour, M., Sefidkouhi, M.A.G., Raeini, M.: Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events. Agric. Water Manag. 180, 50–60 (2017)

    Article  Google Scholar 

  36. Vlachos, I.K., Sergiadis, G.D.: Intuitionistic fuzzy information-applications to pattern recognition. Pattern Recogn. Lett. 28(2), 197–206 (2007)

    Article  Google Scholar 

  37. Verma, R., Sharma, B.D.: Exponential entropy on intuitionistic fuzzy set. Kybernetika 49(1), 114–127 (2013)

    MathSciNet  MATH  Google Scholar 

  38. Wei, C.P., Gao, Z.H., Guo, T.T.: An intuitionistic fuzzy entropy measure based on the trigonometric function. Control Decis. 27, 571–574 (2012)

    MathSciNet  MATH  Google Scholar 

  39. Wei, P., Ye, J.: Improved intuitionistic fuzzy cross-entropy and its application to pattern recognition. In: International Conference on Intelligent Systems and Knowledge Engineering, pp. 114–116 (2010)

  40. Zeng, W.Y., Li, H.X.: Relationship between similarity measure and entropy of interval valued fuzzy sets. Fuzzy Sets Syst. 157, 1477–1484 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang, Q.S., Jiang, S.Y.: A note on information entropy measures for vague sets and its applications. Inf. Sci. 178(21), 4184–4191 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zadeh, L.A.: Probability measures of fuzzy events. J. Math. Anal. Appl. 23, 421–427 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zadeh, L.A.: Fuzzy Sets. Inf. Control 8, 338–353 (1965)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arunodaya Raj Mishra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, M.D., Mishra, A.R. & Ansari, F.T. New Divergence and Entropy Measures for Intuitionistic Fuzzy Sets on Edge Detection. Int. J. Fuzzy Syst. 20, 474–487 (2018). https://doi.org/10.1007/s40815-017-0348-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-017-0348-4

Keywords

Navigation