[go: up one dir, main page]

Skip to main content
Log in

Evaluation of optimal parameters of MR fluids for damper application using particle swarm and response surface optimisation

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The controllable rheological properties of MR fluid exhibit viscoelastic properties within pre-yield, which are essential for the characterization of MR dampers for the isolation of vibration. In the present work, using particle swarm optimisation (PSO), it is identified that the proportion of MR fluid constituents, fluid gap and current are the parameters which influence majorly on the rheological properties and damping effect of MR damper. Initially, rheological properties of the prepared MR fluid samples are determined using rotational plate–plate type rheometer with the magnetorheological device cell attachment by keeping three levels of gap between the parallel plates. Three different proportions of MR fluid are prepared based on the volume fraction of carbonyl iron particle, i.e., 25, 30 and 35% in the silicone carrier fluid along with 1% of lithium-based grease as stabiliser. The objective function of this optimisation problem is to maximise the shear stress and damping force of the MR damper. The design of experiment (DOE) is employed to obtain the various combinations of parameters and their respective responses. The interaction of the regression model obtained from the DOE is used in PSO to evaluate the optimal parameters. The results indicated that the MR fluid with the particle concentration of 31% is the optimal proportion for MR damper application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rabinow J (1948) The magnetic fluid clutch. Am Inst Electr Eng Trans 67(2):1308–1315

    Article  Google Scholar 

  2. Phulé PP, Ginder JM (1999) Synthesis and properties of novel magnetorheological fluids having improved stability and redispersibility. Int J Modern Phys B 13:2019–2027

    Article  Google Scholar 

  3. Claracq J, Sarrazin J, Montfort JP (2004) Viscoelastic properties of magnetorheological fluids. Rheol Acta 43(1):38–49

    Article  Google Scholar 

  4. Wang X, Gordaninejad F (2006) Study of magnetorheological fluids at high shear rates. Rheol Acta 45(6):899–908

    Article  Google Scholar 

  5. Genc S, Phulé PP (2002) Rheological properties of magnetorheological fluids. Smart Mater Struct 11(1):140

    Article  Google Scholar 

  6. De Vicente J, López-López MT, Durán JD, González-Caballero F (2004) Shear flow behaviour of confined magnetorheological fluids at low magnetic field strengths. Rheol Acta 44(1):94–103

    Article  Google Scholar 

  7. Guo C, Gong X, Xuan S, Zhang Y, Jiang W (2012) An experimental investigation on the normal force behaviour of magnetorheological suspensions. Korea Aust Rheol J 24(3):171–180

    Article  Google Scholar 

  8. Ahamed R, Rashid MM, Ferdaus MM, Yusof HM (2016) Design and modelling of energy generated magneto rheological damper. Korea Aust Rheol J 28(1):67–74

    Article  Google Scholar 

  9. Parlak Z, Engin T, Şahin İ (2013) Optimal magnetorheological damper configuration using the Taguchi experimental design method. J Mech Des 135(8):081008

    Article  Google Scholar 

  10. Nguyen QH, Choi SB (2009) Optimal design of MR shock absorber and application to vehicle suspension. Smart Mater Struct 18(3):035012

    Article  Google Scholar 

  11. Parlak Z, Engin T, Çallı T (2012) Optimal design of MR damper via finite element analyses of fluid dynamic and magnetic field. Mechatronics 22(6):890–903

    Article  Google Scholar 

  12. Nguyen QH, Choi SB, Wereley NM (2008) Optimal design of magnetorheological valves via a finite element method considering control energy and a time constant. Smart Mater Struct 17(2):025024

    Article  Google Scholar 

  13. Ferdaus MM, Rashid MM, Hasan MH, Rahman MA (2014) Optimal design of Magneto-Rheological damper comparing different configurations by finite element analysis. J Mech Sci Technol 28(9):3667–3677

    Article  Google Scholar 

  14. Gurubasavaraju TM, Kumar H, Arun M (2017) Optimization of monotube magnetorheological damper under shear mode. J Braz Soc Mech Sci Eng 39(6):2225–2240

    Article  Google Scholar 

  15. Hu G, Xie Z, Li W (2015) Optimal design of a double coil magnetorheological fluid damper with various piston profiles. In: World congress on structural and multidisciplinary optimisation, pp 2–7

  16. Wang D, Zi B, Zeng Y, Hou Y, Meng Q (2014) Temperature-dependent material properties of the components of magnetorheological fluids. J Mater Sci 49(24):8459–8470

    Article  Google Scholar 

  17. Wang D, Zi B, Zeng Y, Xie F, Hou Y (2017) Measurement of temperature-dependent mechanical properties of magnetorheological fluids using a parallel disk shear stress testing device. Proc Inst Mech Eng C J Mech Eng Sci 231(9):1725–1737

    Article  Google Scholar 

  18. Gao F, Liu YN, Liao WH (2017) Optimal design of a magnetorheological damper used in smart prosthetic knees. Smart Mater Struct 26(3):035034

    Article  Google Scholar 

  19. Hemanth K, Kumar H, Gangadharan KV (2017) Vertical dynamic analysis of a quarter car suspension system with MR damper. J Braz Soc Mech Sci Eng 39(1):41–51

    Article  Google Scholar 

  20. Wang D, Zi B, Qian S, Qian J (2017) Steady-state heat-flow coupling field of a high-power magnetorheological fluid clutch utilizing liquid cooling. J Fluid Eng. doi:10.1115/1.4037171

  21. Yang Y, Li L, Chen G (2009) Static yield stress of ferrofluid-based magnetorheological fluids. Rheol Acta 48(4):457–466

    Article  Google Scholar 

  22. Jonkkari I, Kostamo E, Kostamo J, Syrjala S, Pietola M (2012) Effect of the plate surface characteristics and gap height on yield stresses of a magnetorheological fluid. Smart Mater Struct 21(7):075030

    Article  Google Scholar 

  23. Jiang Z, Lu K (2002) A single-chain model for quasi-static shear stress-strain properties of magnetorheological fluids. Int J Modern Phys B 16(17n18):2739–2744

    Article  Google Scholar 

  24. Chen K, Tian Y, Shan L, Zhang X, Meng Y (2013) The rheological properties of magnetic field excited magnetic powders sheared between two parallel plates. Smart Mater Struct 22(11):115036

    Article  Google Scholar 

  25. Laun HM, Gabriel C, Kieburg C (2011) Wall material and roughness effects on transmittable shear stresses of magnetorheological fluids in plate–plate magnetorheometry. Rheo Acta 50(2):141–157

    Article  Google Scholar 

  26. Jolly MR, Bender JW, Carlson JD (1998) Properties and applications of commercial magnetorheological fluids. In: 5th annual international symposium on smart structures and materials, pp 262–275

  27. Xu ZD, Sha LF, Zhang XC, Ye HH (2013) Design, performance test and analysis on magnetorheological damper for earthquake mitigation. Struct Control Health Monit 20(6):956–970

    Article  Google Scholar 

  28. Eberhart R, Kennedy J (1995). A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, 1995. MHS’95, pp 39–43

  29. Lee TS, Lin YJ, Ting O (2007) An investigation of grinding process optimization via evolutionary algorithms. In: Proceedings of the IEEE swarm intelligence symposium, IEEE computer society, Washington, DC, USA, pp 176–181. ISBN: 1-4244-0708-7

  30. Ghodsiyeh D, Golshan A, Izman S (2014) Multi-objective process optimization of wire electrical discharge machining based on response surface methodology. J Braz Soc Mech Sci Eng 36(2):301–313

    Article  Google Scholar 

  31. DESIGN EXPERT software (2013) State-ease. http://www.statease.com/training/webinar.html. Accessed 21 Jan 2017

  32. MINITAB software product 17 (2016) Webinar document. http://blog.minitab.com/blog/adventures-in-statistics/curing-heteroscedasticity-with-weighted-regression-in-minitab-statistical-software. Accessed 21 Jan 2017

Download references

Acknowledgement

The authors acknowledge the funding support from Department of Science and Technology, India (DST): No. SB/FTP/ETA-0071/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemantha Kumar.

Additional information

Technical Editor: Pedro Manuel Calas Lopes Pacheco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurubasavaraju, T.M., Kumar, H. & Arun, M. Evaluation of optimal parameters of MR fluids for damper application using particle swarm and response surface optimisation. J Braz. Soc. Mech. Sci. Eng. 39, 3683–3694 (2017). https://doi.org/10.1007/s40430-017-0875-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-017-0875-9

Keywords

Navigation