[go: up one dir, main page]

Skip to main content
Log in

Two algebraic methods for least squares L-structured and generalized L-structured problems of the commutative quaternion Stein matrix equation

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we put forward two efficient methods for solving the commutative quaternion Stein matrix equation \(X+AXB=C\). By combining real representation of a commutative quaternion matrix and \({\mathcal {H}}\)-representation or generalized \({\mathcal {H}}\)-representation of special matrices, we investigate the minimal norm least squares L-structured and generalized L-structured solutions of the previous commutative quaternion matrix equation and derive their expressions. In this way, we first present a theoretical study on extending L-structured real matrices to generalized L-structured matrices, and introduce some generalized L-structured matrices. Based on them, we then discuss their applications in commutative quaternion Stein matrix equation. The algorithms only involve real operations. Consequently, it is very simple and convenient, and it can be used for all kinds of commutative quaternion matrix equation with similar problems. Furthermore, an illustrative example is provided to show the feasibility of the given methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Antoulas AC (2005) Approximation of large-scale dynamical systems. Society for Industrial and Applied Mathematics

  • Bouhamidi A, Jbilou K (2007) Sylvester Tikhonov-regularization methods in image restoration. J Comput Appl Math 206:86–98

    Article  MathSciNet  MATH  Google Scholar 

  • Chen J, Chen X (2001) Special matrices. Tsinghua University Press, Tsinghua

    Google Scholar 

  • Chen H, Hou CP, Wang Q et al (2014) Cumulants-based Toeplitz matrices reconstruction method for 2-D coherent DOA estimation. IEEE Sens J 14(8):2824–2832

    Article  Google Scholar 

  • de Souza E, Bhattacharyya SP (1981) Controllability, observability and the solution of \(AX-XB=C\). Linear Algebra Appl 39:167–188

    MathSciNet  MATH  Google Scholar 

  • Ding WX, Li Y, Wang D (2021) Special least squares solutions of the reduced biquaternion matrix equation \(AX=B\) with applications. Comput Appl Math 40(8):1–15

    MathSciNet  MATH  Google Scholar 

  • Golub GH, Van Loan CF (2013) Matrix Computations, 4th edn. The Johns Hopkins University Press, Baltimore, MD

    MATH  Google Scholar 

  • Hyland D, Bernstein D (1984) The optimal projection equations for fixed-order dynamic compensation. IEEE Trans Autom Control 29(11):1034–1037

    Article  MathSciNet  MATH  Google Scholar 

  • Jia ZG, Ng MK (2021) Structure preserving quaternion generalized minimal residual method. SIAM J Matrix Anal Appl 42(2):616–634

    Article  MathSciNet  MATH  Google Scholar 

  • Jia ZG, Wei MS, Ling ST (2013) A new structure-preserving method for quaternion Hermitian eigenvalue problems. J Comput Appl Math 239:12–24

    Article  MathSciNet  MATH  Google Scholar 

  • Jia ZG, Wei MS, Zhao MX et al (2018) A new real structure-preserving quaternion QR algorithm. J Comput Appl Math 343:26–48

    Article  MathSciNet  MATH  Google Scholar 

  • Jia ZG, Ng MK, Wang W (2019) Color image restoration by saturation-value total variation. SIAM J Imag Sci 12(2):972–1000

    Article  MathSciNet  Google Scholar 

  • Jia ZG, Ng MK, Song GJ (2019) Robust quaternion matrix completion with applications to image inpainting. Numer Linear Algebra Appl 26(4):e2245

    Article  MathSciNet  MATH  Google Scholar 

  • Jia ZG, Ng MK, Song GJ (2019) Lanczos method for large-scale quaternion singular value decomposition. Numer Algorithms 82(2):699–717

    Article  MathSciNet  MATH  Google Scholar 

  • Khatri CG, Mitra SK (1976) Hermitian and nonnegative definite solutions of linear matrix equations. SIAM J Appl Math 31(4):579–585

    Article  MathSciNet  MATH  Google Scholar 

  • Laub A, Heath M, Paige C et al (1987) Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms. IEEE Trans Autom Control 32(2):115–122

    Article  MATH  Google Scholar 

  • Li YT, Wu WJ (2008) Symmetric and skew-antisymmetric solutions to systems of real quaternion matrix equations. Comput Math Appl 55(6):1142–1147

    Article  MathSciNet  MATH  Google Scholar 

  • Liao AP, Bai ZZ (2005) Least squares symmetric and skew-symmetric solutions of the matrix equation \(AXA^T+BYB^T=C\) with the least norm. Math Numer Sin 27(2):81–95

    MathSciNet  MATH  Google Scholar 

  • Liu LS, Wang QW, Chen JF et al (2022) An exact solution to a quaternion matrix equation with an application. Symmetry 14(2):375

    Article  Google Scholar 

  • Magnus JR (1983) L-structured matrices and linear matrix equations. Linear Multilinear A 14(1):67–88

    Article  MathSciNet  MATH  Google Scholar 

  • Mehany MS, Wang QW (2022) Three symmetrical systems of coupled Sylvester-like quaternion matrix equations. Symmetry 14(3):550

    Article  Google Scholar 

  • Narendra KS, Shorten R (2010) Hurwitz stability of Metzler matrices. IEEE Trans Autom Control 55(6):1484–1487

    Article  MathSciNet  MATH  Google Scholar 

  • Roberts JD (1980) Linear model reduction and solution of the algebraic Riccati equation by use of the sign function. Int J Control 32(4):677–687

    Article  MathSciNet  MATH  Google Scholar 

  • Segre C (1892) The real representations of complex elements and extension to bicomplex systems. Math Ann 40:413–467

    Article  MathSciNet  Google Scholar 

  • Song CQ, Chen GL, Liu QB (2012) Explicit solutions to the quaternion matrix equations \(X-AXF=C\) and \(X-A\tilde{X}F=C\). Int J Comput Math 89(7):890–900

    MathSciNet  MATH  Google Scholar 

  • Yuan SF, Wang QW (2016) L-structured quaternion matrices and quaternion linear matrix equations. Linear Multilinear A 64(2):321–339

    Article  MathSciNet  MATH  Google Scholar 

  • Yuan WJ, Wang QW (2022) The common solution of twelve matrix equations over the quaternions. Filomat 36(3):887–903

    Article  MathSciNet  Google Scholar 

  • Yuan SF, Liao AP, Lei Y (2007) Least squares symmetric solution of the matrix equation \(AXB+CYD=E\) with the least norm. Math Numer Sin 29:203–216

    MathSciNet  Google Scholar 

  • Yuan SF, Liao AP, Lei Y (2008) Least squares Hermitian solution of the matrix equation \((AXB, CXD)=(E, F)\) with the least norm over the skew field of quaternions. Math Comput Model 48(1–2):91–100

    MathSciNet  MATH  Google Scholar 

  • Zhang WH, Chen BS (2012) \({\cal{H}}\)-Representation and applications to generalized Lyapunov equations and linear stochastic systems. IEEE Trans Autom Control 57(12):3009–3022

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang YN, Jiang DC, Wang J (2002) A recurrent neural network for solving Sylvester equation with time-varying coefficients. IEEE Trans Neural Netw 13(5):1053–1063

    Article  Google Scholar 

  • Zhang W, Shen SQ, Han ZZ (2008) Sufficient conditions for Hurwitz stability of matrices. Lat Am Appl Res 38(3):253–258

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Li.

Additional information

Communicated by Jinyun Yuan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the National Natural Science Foundation of China under Grant 62176112, the Natural Science Foundation of Shandong under Grant ZR2020MA053.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, A., Li, Y., Ding, W. et al. Two algebraic methods for least squares L-structured and generalized L-structured problems of the commutative quaternion Stein matrix equation. Comp. Appl. Math. 41, 251 (2022). https://doi.org/10.1007/s40314-022-01943-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-022-01943-x

Keywords

Mathematics Subject Classification