[go: up one dir, main page]

Skip to main content

Advertisement

Log in

The effects of exercise on epigenetic modifications: focus on DNA methylation, histone modifications and non-coding RNAs

  • Review Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Physical activity on a regular basis has been shown to bolster the overall wellness of an individual; research is now revealing that these changes are accompanied by epigenetic modifications. Regular exercise has been proven to make intervention plans more successful and prolong adherence to them. When it comes to epigenetic changes, there are four primary components. This includes changes to the DNA, histones, expression of particular non-coding RNAs and DNA methylation. External triggers, such as physical activity, can lead to modifications in the epigenetic components, resulting in changes in the transcription process. This report pays attention to the current knowledge that pertains to the epigenetic alterations that occur after exercise, the genes affected and the resulting characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Sellami M, Bragazzi N, Prince MS, Denham J, Elrayess M. Regular, intense exercise training as a healthy aging lifestyle strategy: preventing DNA damage, telomere shortening and adverse DNA methylation changes over a lifetime. Front Genet. 2021;12: 652497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ahmad S, Heraclides A, Sun Q, Elgzyri T, Rönn T, Ling C, et al. Telomere length in blood and skeletal muscle in relation to measures of glycaemia and insulinaemia. Diabet Med. 2012;29(10):e377–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Weiskopf D, Weinberger B, Grubeck-Loebenstein B. The aging of the immune system. Trans Inter. 2009;22(11):1041–50.

    Article  CAS  Google Scholar 

  4. Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat Immunol. 2011;12(3):204–12.

    Article  CAS  PubMed  Google Scholar 

  5. Maynard S, Keijzers G, Hansen AM, Osler M, Molbo D, Bendix L, et al. Associations of subjective vitality with DNA damage, cardiovascular risk factors and physical performance. Acta Physiol (Oxf). 2015;213(1):156–70.

    Article  CAS  PubMed  Google Scholar 

  6. Ramos JS, Dalleck LC, Ramos MV, Borrani F, Roberts L, Gomersall S, et al. 12 min/week of high-intensity interval training reduces aortic reservoir pressure in individuals with metabolic syndrome: a randomized trial. J Hypertens. 2016;34(10):1977–87.

    Article  CAS  PubMed  Google Scholar 

  7. Sawyer BJ, Tucker WJ, Bhammar DM, Ryder JR, Sweazea KL, Gaesser GA. Effects of high-intensity interval training and moderate-intensity continuous training on endothelial function and cardiometabolic risk markers in obese adults. J Appl Physiol. 2016;121(1):279–88.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wentzensen IM, Mirabello L, Pfeiffer RM, Savage SA. The association of telomere length and cancer: a meta-analysis. Cancer Epidemiol Biomark Prevent. 2011;20(6):1238–50.

    Article  CAS  Google Scholar 

  9. Zhang X, Zhao Q, Zhu W, Liu T, Xie SH, Zhong LX, et al. The Association of telomere length in peripheral blood cells with cancer risk: a systematic review and meta-analysis of prospective studies. Cancer Epidemiol Biomark Prevent. 2017;26(9):1381–90.

    Article  CAS  Google Scholar 

  10. Forero DA, González-Giraldo Y, López-Quintero C, Castro-Vega LJ, Barreto GE, Perry G. Meta-analysis of Telomere length in Alzheimer’s disease. J Gerontol A Biol Sci Med Sci. 2016;71(8):1069–73.

    Article  PubMed  PubMed Central  Google Scholar 

  11. von Zglinicki T, Bürkle A, Kirkwood TB. Stress, DNA damage and ageing – an integrative approach. Exp Gerontol. 2001;36(7):1049–62.

    Article  Google Scholar 

  12. Fisher-Wellman K, Bloomer RJ. Acute exercise and oxidative stress: a 30 year history. Dynam Med DM. 2009;8:1.

    Article  Google Scholar 

  13. Barrès R, Yan J, Egan B, Treebak JT, Rasmussen M, Fritz T, et al. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab. 2012;15(3):405–11.

    Article  PubMed  Google Scholar 

  14. Werner CM, Hecksteden A, Morsch A, Zundler J, Wegmann M, Kratzsch J, et al. Differential effects of endurance, interval, and resistance training on telomerase activity and telomere length in a randomized, controlled study. Eur Heart J. 2019;40(1):34–46.

    Article  CAS  PubMed  Google Scholar 

  15. Probst AV, Dunleavy E, Almouzni G. Epigenetic inheritance during the cell cycle. Nat Rev Mol Cell Biol. 2009;10(3):192–206.

    Article  CAS  PubMed  Google Scholar 

  16. Grazioli E, Dimauro I, Mercatelli N, Wang G, Pitsiladis Y, Di Luigi L, et al. Physical activity in the prevention of human diseases: role of epigenetic modifications. BMC Genom. 2017;18(Suppl 8):802.

    Article  Google Scholar 

  17. Baylin SB, Jones PA. A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer. 2011;11(10):726–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fincham JRS. Epigenetic Mechanisms of Gene Regulation. Edited by Russo VEA, Martienssen RA, Riggs AD. Cold Spring Harbor Laboratory Press, 1996. 693+xii pages. Price $125. ISBN 0 87969 490 4. Genetics Research. 1997;69(2):159–62.

  19. Santos-Rebouças CB, Pimentel MM. Implication of abnormal epigenetic patterns for human diseases. Eur J Hum Genet EJHG. 2007;15(1):10–7.

    Article  PubMed  Google Scholar 

  20. Feng J, Chang H, Li E, Fan G. Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system. J Neurosci Res. 2005;79(6):734–46.

    Article  CAS  PubMed  Google Scholar 

  21. Goto K, Numata M, Komura JI, Ono T, Bestor TH, Kondo H. Expression of DNA methyltransferase gene in mature and immature neurons as well as proliferating cells in mice. Different Res Biol Divers. 1994;56(1–2):39–44.

    Article  CAS  Google Scholar 

  22. Choy MK, Movassagh M, Goh HG, Bennett MR, Down TA, Foo RS. Genome-wide conserved consensus transcription factor binding motifs are hyper-methylated. BMC Genom. 2010;11:519.

    Article  Google Scholar 

  23. Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet. 1998;19(2):187–91.

    Article  CAS  PubMed  Google Scholar 

  24. MacDonald JL, Roskams AJ. Epigenetic regulation of nervous system development by DNA methylation and histone deacetylation. Prog Neurobiol. 2009;88(3):170–83.

    Article  CAS  PubMed  Google Scholar 

  25. Bochtler M, Kolano A, Xu GL. DNA demethylation pathways: Additional players and regulators. BioEssays. 2017;39(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  26. Lawrence M, Daujat S, Schneider R. Lateral thinking: how histone modifications regulate gene expression. Trends Genet TIG. 2016;32(1):42–56.

    Article  CAS  PubMed  Google Scholar 

  27. Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38(1):23–38.

    Article  CAS  PubMed  Google Scholar 

  28. Thune I, Furberg A-S. Physical activity and cancer risk: dose-response and cancer, all sites and site-specific. Med Sci Sports Exerc. 2001;33(6 Suppl):S530–50; discussion S609.

  29. Friedenreich CM, Orenstein MR. Physical activity and cancer prevention: etiologic evidence and biological mechanisms. J Nutr. 2002;132(11):3456S-3464S.

    Article  CAS  PubMed  Google Scholar 

  30. McTiernan A. Mechanisms linking physical activity with cancer. Nat Rev Cancer. 2008;8(3):205–11.

    Article  CAS  PubMed  Google Scholar 

  31. Lin DC. Exercise impacts the epigenome of cancer. Prostate Cancer Prostatic Dis. 2022;25(3):379–80.

    Article  PubMed  Google Scholar 

  32. Dufresne S, Guéritat J, Wong CP, Isanejad A, Ho E, Serna E, et al. Exercise training as a modulator of epigenetic events in prostate tumors. Prostate Cancer Prostatic Dis. 2022;25(1):119–22.

    Article  CAS  PubMed  Google Scholar 

  33. Barros-Silva D, Costa-Pinheiro P, Duarte H, Sousa EJ, Evangelista AF, Graça I, et al. MicroRNA-27a-5p regulation by promoter methylation and MYC signaling in prostate carcinogenesis. Cell Death Dis. 2018;9(2):167.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gueritat J, Lefeuvre-Orfila L, Vincent S, Cretual A, Ravanat J-L, Gratas-Delamarche A, et al. Exercise training combined with antioxidant supplementation prevents the antiproliferative activity of their single treatment in prostate cancer through inhibition of redox adaptation. Free Radical Biol Med. 2014;77:95–105.

    Article  CAS  Google Scholar 

  35. Dimeo FC, Stieglitz RD, Novelli-Fischer U, Fetscher S, Keul J. Effects of physical activity on the fatigue and psychologic status of cancer patients during chemotherapy. Cancer. 1999;85(10):2273–7.

    Article  CAS  PubMed  Google Scholar 

  36. Ibrahim EM, Al-Homaidh A. Physical activity and survival after breast cancer diagnosis: meta-analysis of published studies. Med Oncol (Northwood, London, England). 2011;28(3):753–65.

    Article  Google Scholar 

  37. Zeng H, Irwin ML, Lu L, Risch H, Mayne S, Mu L, et al. Physical activity and breast cancer survival: an epigenetic link through reduced methylation of a tumor suppressor gene L3MBTL1. Breast Cancer Res Treat. 2012;133(1):127–35.

    Article  CAS  PubMed  Google Scholar 

  38. Bryan AD, Magnan RE, Hooper AE, Harlaar N, Hutchison KE. Physical activity and differential methylation of breast cancer genes assayed from saliva: a preliminary investigation. Ann Behav Med. 2013;45(1):89–98.

    Article  PubMed  Google Scholar 

  39. Coyle YM. Physical activity as a negative modulator of estrogen-induced breast cancer. Cancer Causes Control CCC. 2008;19(10):1021–9.

    Article  PubMed  Google Scholar 

  40. Rogers CJ, Colbert LH, Greiner JW, Perkins SN, Hursting SD. Physical activity and cancer prevention: pathways and targets for intervention. Sports Med (Auckland, NZ). 2008;38(4):271–96.

    Article  Google Scholar 

  41. Slattery ML, Curtin K, Sweeney C, Levin TR, Potter J, Wolff RK, et al. Diet and lifestyle factor associations with CpG island methylator phenotype and BRAF mutations in colon cancer. Int J Cancer. 2007;120(3):656–63.

    Article  CAS  PubMed  Google Scholar 

  42. Go VL, Wong DA, Butrum R. Diet, nutrition and cancer prevention: where are we going from here? J Nutr. 2001;131(11 Suppl):3121s–6s.

    Article  CAS  PubMed  Google Scholar 

  43. Shames DS, Minna JD, Gazdar AF. DNA methylation in health, disease, and cancer. Curr Mol Med. 2007;7(1):85–102.

    Article  CAS  PubMed  Google Scholar 

  44. Hill VK, Hesson LB, Dansranjavin T, Dallol A, Bieche I, Vacher S, et al. Identification of 5 novel genes methylated in breast and other epithelial cancers. Mol Cancer. 2010;9:51.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Coyle YM, Xie XJ, Lewis CM, Bu D, Milchgrub S, Euhus DM. Role of physical activity in modulating breast cancer risk as defined by APC and RASSF1A promoter hypermethylation in nonmalignant breast tissue. Cancer Epidemiol Biomark Prevent. 2007;16(2):192–6.

    Article  CAS  Google Scholar 

  46. Nakajima K, Takeoka M, Mori M, Hashimoto S, Sakurai A, Nose H, et al. Exercise effects on methylation of ASC gene. Int J Sports Med. 2010;31(9):671–5.

    Article  CAS  PubMed  Google Scholar 

  47. Stehlik C, Lee SH, Dorfleutner A, Stassinopoulos A, Sagara J, Reed JC. Apoptosis-associated speck-like protein containing a caspase recruitment domain is a regulator of procaspase-1 activation. J Immunol (Baltimore, Md : 1950). 2003;171(11):6154–63.

  48. Zhang FF, Cardarelli R, Carroll J, Zhang S, Fulda KG, Gonzalez K, et al. Physical activity and global genomic DNA methylation in a cancer-free population. Epigenetics. 2011;6(3):293–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jokai M, Torma F, McGreevy KM, Koltai E, Bori Z, Babszki G, et al. DNA methylation clock DNAmFitAge shows regular exercise is associated with slower aging and systemic adaptation. GeroScience. 2023.

  50. Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet. 2018;19(6):371–84.

    Article  CAS  PubMed  Google Scholar 

  51. Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging. 2019;11(2):303–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA. 2005;102(30):10604–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang M, Xi Z, Ghani M, Jia P, Pal M, Werynska K, et al. Genetic and epigenetic study of ALS-discordant identical twins with double mutations in SOD1 and ARHGEF28. J Neurol Neurosurg Psychiatry. 2016;87(11):1268–70.

    Article  PubMed  Google Scholar 

  54. Booth FW, Roberts CK, Thyfault JP, Ruegsegger GN, Toedebusch RG. Role of inactivity in chronic diseases: evolutionary insight and pathophysiological mechanisms. Physiol Rev. 2017;97(4):1351–402.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Quan H, Koltai E, Suzuki K, Aguiar AS Jr, Pinho R, Boldogh I, et al. Exercise, redox system and neurodegenerative diseases. Biochim Biophys Acta. 2020;1866(10): 165778.

    Article  CAS  Google Scholar 

  56. Gomez-Pinilla F, Zhuang Y, Feng J, Ying Z, Fan G. Exercise impacts brain-derived neurotrophic factor plasticity by engaging mechanisms of epigenetic regulation. Eur J Neurosci. 2011;33(3):383–90.

    Article  CAS  PubMed  Google Scholar 

  57. Collins A, Hill LE, Chandramohan Y, Whitcomb D, Droste SK, Reul JM. Exercise improves cognitive responses to psychological stress through enhancement of epigenetic mechanisms and gene expression in the dentate gyrus. PLoS ONE. 2009;4(1): e4330.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kashimoto RK, Toffoli LV, Manfredo MHF, Volpini VL, Martins-Pinge MC, Pelosi GG, et al. Physical exercise affects the epigenetic programming of rat brain and modulates the adaptive response evoked by repeated restraint stress. Behav Brain Res. 2016;296:286–9.

    Article  CAS  PubMed  Google Scholar 

  59. Sølvsten CAE, de Paoli F, Christensen JH, Nielsen AL. Voluntary physical exercise induces expression and epigenetic remodeling of VegfA in the rat hippocampus. Mol Neurobiol. 2018;55(1):567–82.

    Article  PubMed  Google Scholar 

  60. Flynn MG, McFarlin BK, Phillips MD, Stewart LK, Timmerman KL. Toll-like receptor 4 and CD14 mRNA expression are lower in resistive exercise-trained elderly women. J Appl Physiol. 2003;95(5):1833–42.

    Article  CAS  PubMed  Google Scholar 

  61. Deswaerte V, Nguyen P, West A, Browning AF, Yu L, Ruwanpura SM, et al. Inflammasome adaptor ASC suppresses apoptosis of gastric cancer cells by an IL18-mediated inflammation-independent mechanism. Can Res. 2018;78(5):1293–307.

    Article  CAS  Google Scholar 

  62. Poulsen HE, Loft S, Vistisen K. Extreme exercise and oxidative DNA modification. J Sports Sci. 1996;14(4):343–6.

    Article  CAS  PubMed  Google Scholar 

  63. Brown WM. Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis. Br J Sports Med. 2015;49(24):1567–78.

    Article  PubMed  Google Scholar 

  64. Alaskhar Alhamwe B, Khalaila R, Wolf J, von Bülow V, Harb H, Alhamdan F, et al. Histone modifications and their role in epigenetics of atopy and allergic diseases. Allergy Asthma Clin Immunol. 2018;14:39.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Healy S, Khan P, He S, Davie JR. Histone H3 phosphorylation, immediate-early gene expression, and the nucleosomal response: a historical perspective. Biochem Cell Biol Biochimie et Biologie Cellulaire. 2012;90(1):39–54.

    Article  CAS  PubMed  Google Scholar 

  67. Rossetto D, Avvakumov N, Côté J. Histone phosphorylation: a chromatin modification involved in diverse nuclear events. Epigenetics. 2012;7(10):1098–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sawicka A, Seiser C. Histone H3 phosphorylation - a versatile chromatin modification for different occasions. Biochimie. 2012;94(11):2193–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Swygert SG, Peterson CL. Chromatin dynamics: interplay between remodeling enzymes and histone modifications. Biochem Biophys Acta. 2014;1839(8):728–36.

    CAS  PubMed  Google Scholar 

  70. Agricola E, Verdone L, Di Mauro E, Caserta M. H4 acetylation does not replace H3 acetylation in chromatin remodelling and transcription activation of Adr1-dependent genes. Mol Microbiol. 2006;62(5):1433–46.

    Article  CAS  PubMed  Google Scholar 

  71. Gansen A, Tóth K, Schwarz N, Langowski J. Opposing roles of H3- and H4-acetylation in the regulation of nucleosome structure––a FRET study. Nucleic Acids Res. 2015;43(3):1433–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kurdistani SK, Tavazoie S, Grunstein M. Mapping global histone acetylation patterns to gene expression. Cell. 2004;117(6):721–33.

    Article  CAS  PubMed  Google Scholar 

  73. Harb H, Alashkar Alhamwe B, Garn H, Renz H, Potaczek DP. Recent developments in epigenetics of pediatric asthma. Curr Opin Pediatr. 2016;28(6):754–63.

    Article  CAS  PubMed  Google Scholar 

  74. Morera L, Lübbert M, Jung M. Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clin Epigenet. 2016;8:57.

    Article  Google Scholar 

  75. Potaczek DP, Harb H, Michel S, Alhamwe BA, Renz H, Tost J. Epigenetics and allergy: from basic mechanisms to clinical applications. Epigenomics. 2017;9(4):539–71.

    Article  CAS  PubMed  Google Scholar 

  76. Sawicka A, Hartl D, Goiser M, Pusch O, Stocsits RR, Tamir IM, et al. H3S28 phosphorylation is a hallmark of the transcriptional response to cellular stress. Genome Res. 2014;24(11):1808–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Coffey VG, Hawley JA. The molecular bases of training adaptation. Sports Med. 2007;37:737–63.

    Article  PubMed  Google Scholar 

  78. Hargreaves M. Exercise and gene expression. Prog Mol Biol Transl Sci. 2015;135:457–69.

    Article  PubMed  Google Scholar 

  79. Bishop DJ, Granata C, Eynon N. Can we optimise the exercise training prescription to maximise improvements in mitochondria function and content? Biochimica et Biophysica Acta (BBA) General Subjects. 2014;1840(4):1266–75.

  80. Hawley JA, Hargreaves M, Joyner MJ, Zierath JR. Integrative biology of exercise. Cell. 2014;159(4):738–49.

    Article  CAS  PubMed  Google Scholar 

  81. Liu Y, Randall WR, Schneider MF. Activity-dependent and -independent nuclear fluxes of HDAC4 mediated by different kinases in adult skeletal muscle. J Cell Biol. 2005;168(6):887–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shen T, Liu Y, Randall WR, Schneider MF. Parallel mechanisms for resting nucleo-cytoplasmic shuttling and activity dependent translocation provide dual control of transcriptional regulators HDAC and NFAT in skeletal muscle fiber type plasticity. J Muscle Res Cell Motil. 2006;27(5–7):405–11.

    Article  CAS  PubMed  Google Scholar 

  83. Kraniou Y, Cameron-Smith D, Misso M, Collier G, Hargreaves M. Effects of exercise on GLUT-4 and glycogenin gene expression in human skeletal muscle. J Appl Physiol. 2000;88(2):794–6.

    Article  CAS  PubMed  Google Scholar 

  84. Thai MV, Guruswamy S, Cao KT, Pessin JE, Olson AL. Myocyte enhancer factor 2 (MEF2)-binding site is required for GLUT4 gene expression in transgenic mice. Regulation of MEF2 DNA binding activity in insulin-deficient diabetes. J Biol Chem. 1998;273(23):14285–92.

    Article  CAS  PubMed  Google Scholar 

  85. Czubryt MP, McAnally J, Fishman GI, Olson EN. Regulation of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1 alpha ) and mitochondrial function by MEF2 and HDAC5. Proc Natl Acad Sci USA. 2003;100(4):1711–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. McGee SL, Hargreaves M. Exercise and myocyte enhancer factor 2 regulation in human skeletal muscle. Diabetes. 2004;53(5):1208–14.

    Article  CAS  PubMed  Google Scholar 

  87. McGee SL, Sparling D, Olson AL, Hargreaves M. Exercise increases MEF2- and GEF DNA-binding activity in human skeletal muscle. FASEB J. 2006;20(2):348–9.

    Article  CAS  PubMed  Google Scholar 

  88. McGee SL, Fairlie E, Garnham AP, Hargreaves M. Exercise-induced histone modifications in human skeletal muscle. J Physiol. 2009;587(Pt 24):5951–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rose AJ, Hargreaves M. Exercise increases Ca2+-calmodulin-dependent protein kinase II activity in human skeletal muscle. J Physiol. 2003;553(Pt 1):303–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Smith JA, Kohn TA, Chetty AK, Ojuka EO. CaMK activation during exercise is required for histone hyperacetylation and MEF2A binding at the MEF2 site on the Glut4 gene. Am J Physiol Endocrinol Metabol. 2008;295(3):E698–704.

    Article  CAS  Google Scholar 

  91. Backs J, Backs T, Bezprozvannaya S, McKinsey TA, Olson EN. Histone deacetylase 5 acquires calcium/calmodulin-dependent kinase II responsiveness by oligomerization with histone deacetylase 4. Mol Cell Biol. 2008;28(10):3437–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. McGee SL, Howlett KF, Starkie RL, Cameron-Smith D, Kemp BE, Hargreaves M. Exercise increases nuclear AMPK alpha2 in human skeletal muscle. Diabetes. 2003;52(4):926–8.

    Article  CAS  PubMed  Google Scholar 

  93. Bamman MM, Petrella JK, Kim JS, Mayhew DL, Cross JM. Cluster analysis tests the importance of myogenic gene expression during myofiber hypertrophy in humans. J Appl Physiol. 2007;102(6):2232–9.

    Article  CAS  PubMed  Google Scholar 

  94. Kawano F, Nimura K, Ishino S, Nakai N, Nakata K, Ohira Y. Differences in histone modifications between slow- and fast-twitch muscle of adult rats and following overload, denervation, or valproic acid administration. J Appl Physiol. 2015;119(10):1042–52.

    Article  CAS  PubMed  Google Scholar 

  95. Lim C, Shimizu J, Kawano F, Kim HJ, Kim CK. Adaptive responses of histone modifications to resistance exercise in human skeletal muscle. PLoS One. 2020;15(4): e0231321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lavratti C, Dorneles G, Pochmann D, Peres A, Bard A, de Lima SL, et al. Exercise-induced modulation of histone H4 acetylation status and cytokines levels in patients with schizophrenia. Physiol Behav. 2017;168:84–90.

    Article  CAS  PubMed  Google Scholar 

  97. Ramsden M, Berchtold NC, Patrick Kesslak J, Cotman CW, Pike CJ. Exercise increases the vulnerability of rat hippocampal neurons to kainate lesion. Brain Res. 2003;971(2):239–44.

    Article  CAS  PubMed  Google Scholar 

  98. Risedal A, Zeng J, Johansson BB. Early training may exacerbate brain damage after focal brain ischemia in the rat. J Cerebral Blood Flow Metabol Offic J Int Soc Cerebral Blood Flow Metabol. 1999;19(9):997–1003.

    Article  CAS  Google Scholar 

  99. Elsner VR, Basso C, Bertoldi K, de Meireles LC, Cechinel LR, Siqueira IR. Differential effect of treadmill exercise on histone deacetylase activity in rat striatum at different stages of development. J Physiol Sci JPS. 2017;67(3):387–94.

    Article  CAS  PubMed  Google Scholar 

  100. Elsner VR, Lovatel GA, Bertoldi K, Vanzella C, Santos FM, Spindler C, et al. Effect of different exercise protocols on histone acetyltransferases and histone deacetylases activities in rat hippocampus. Neuroscience. 2011;192:580–7.

    Article  CAS  PubMed  Google Scholar 

  101. Lovatel GA, Bertoldi K, Elsner VR, Vanzella C, Moysés Fdos S, Spindler C, et al. Time-dependent effects of treadmill exercise on aversive memory and cyclooxygenase pathway function. Neurobiol Learn Mem. 2012;98(2):182–7.

    Article  CAS  PubMed  Google Scholar 

  102. Zhang P, Wu W, Chen Q, Chen M. Non-coding RNAs and their Integrated networks. J Integr Bioinform. 2019. https://doi.org/10.1515/jib-2019-0027.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 2014;157(1):77–94.

    Article  CAS  PubMed  Google Scholar 

  104. Peschansky VJ, Wahlestedt C. Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics. 2014;9(1):3–12.

    Article  CAS  PubMed  Google Scholar 

  105. Ponjavic J, Ponting CP, Lunter G. Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res. 2007;17(5):556–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rajabi A, Kayedi M, Rahimi S, Dashti F, Mirazimi SMA, Homayoonfal M, et al. Non-coding RNAs and glioma: focus on cancer stem cells. Mol Therapy Oncolyt. 2022;27:100–23.

    Article  CAS  Google Scholar 

  107. Jafarzadeh A, Seyedmoalemi S, Dashti A, Nemati M, Jafarzadeh S, Aminizadeh N, et al. Interplays between non-coding RNAs and chemokines in digestive system cancers. Biomed Pharmacother. 2022;152:113237.

    Article  CAS  PubMed  Google Scholar 

  108. Mousavi SM, Derakhshan M, Baharloii F, Dashti F, Mirazimi SMA, Mahjoubin-Tehran M, et al. Non-coding RNAs and glioblastoma: Insight into their roles in metastasis. Mol Ther Oncolyt. 2022;24:262–87.

    Article  CAS  Google Scholar 

  109. Dashti F, Mirazimi SMA, Rabiei N, Fathazam R, Rabiei N, Piroozmand H, et al. The role of non-coding RNAs in chemotherapy for gastrointestinal cancers. Mol Ther Nucleic acids. 2021;26:892–926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Balandeh E, Mohammadshafie K, Mahmoudi Y, Hossein Pourhanifeh M, Rajabi A, Bahabadi ZR, et al. Roles of non-coding RNAs and angiogenesis in glioblastoma. Front Cell Dev Biol. 2021;9: 716462.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Razavi ZS, Asgarpour K, Mahjoubin-Tehran M, Rasouli S, Khan H, Shahrzad MK, et al. Angiogenesis-related non-coding RNAs and gastrointestinal cancer. Mol Ther Oncolyt. 2021;21:220–41.

    Article  CAS  Google Scholar 

  112. Mahjoubin-Tehran M, Rezaei S, Jesmani A, Birang N, Morshedi K, Khanbabaei H, et al. New epigenetic players in stroke pathogenesis: From non-coding RNAs to exosomal non-coding RNAs. Biomed Pharmacother. 2021;140:111753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rahimian N, Razavi ZS, Aslanbeigi F, Mirkhabbaz AM, Piroozmand H, Shahrzad MK, et al. Non-coding RNAs related to angiogenesis in gynecological cancer. Gynecol Oncol. 2021;161(3):896–912.

    Article  CAS  PubMed  Google Scholar 

  114. Razavi ZS, Tajiknia V, Majidi S, Ghandali M, Mirzaei HR, Rahimian N, et al. Gynecologic cancers and non-coding RNAs: Epigenetic regulators with emerging roles. Crit Rev Oncol Hematol. 2021;157: 103192.

    Article  PubMed  Google Scholar 

  115. Mirzaei H, Hamblin MR. Regulation of glycolysis by non-coding RNAs in cancer: switching on the Warburg effect. Mol Ther Oncolyt. 2020;19:218–39.

    Article  CAS  Google Scholar 

  116. Beermann J, Piccoli MT, Viereck J, Thum T. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev. 2016;96(4):1297–325.

    Article  CAS  PubMed  Google Scholar 

  117. Shaemi F, Nejati M, Sarrafnia H, Mahabady MK, Tamtaji Z, Taheri AT, et al. Expression of selected long non-coding RNAs in gastric cancer cells treated with coumarin: Possible mechanisms for anti-cancer activity. Pathol Res Pract. 2023;252: 154914.

    Article  CAS  PubMed  Google Scholar 

  118. Dashti F, Mirazimi SMA, Kazemioula G, Mohammadi M, Hosseini M, Razaghi Bahabadi Z, et al. Long non-coding RNAs and melanoma: From diagnosis to therapy. Pathol Res Pract. 2023;241: 154232.

    Article  CAS  PubMed  Google Scholar 

  119. Hashemipour M, Boroumand H, Mollazadeh S, Tajiknia V, Nourollahzadeh Z, Rohani Borj M, et al. Exosomal microRNAs and exosomal long non-coding RNAs in gynecologic cancers. Gynecol Oncol. 2021;161(1):314–27.

    Article  CAS  PubMed  Google Scholar 

  120. Shafabakhsh R, Arianfar F, Vosough M, Mirzaei HR, Mahjoubin-Tehran M, Khanbabaei H, et al. Autophagy and gastrointestinal cancers: the behind the scenes role of long non-coding RNAs in initiation, progression, and treatment resistance. Cancer Gene Ther. 2021;28(12):1229–55.

    Article  CAS  PubMed  Google Scholar 

  121. Vafadar A, Shabaninejad Z, Movahedpour A, Mohammadi S, Fathullahzadeh S, Mirzaei HR, et al. Long non-coding RNAs as epigenetic regulators in cancer. Curr Pharm Des. 2019;25(33):3563–77.

    Article  CAS  PubMed  Google Scholar 

  122. Rahimian N, Nahand JS, Hamblin MR, Mirzaei H. Exosomal MicroRNA profiling. Methods Mol Biol (Clifton, NJ). 2023;2595:13–47.

    Article  CAS  Google Scholar 

  123. Nahand JS, Vandchali NR, Darabi H, Doroudian M, Banafshe HR, Moghoofei M, et al. Exosomal microRNAs: novel players in cervical cancer. Epigenomics. 2020;12(18):1651–60.

    Article  CAS  PubMed  Google Scholar 

  124. Pourhanifeh MH, Vosough M, Mahjoubin-Tehran M, Hashemipour M, Nejati M, Abbasi-Kolli M, et al. Autophagy-related microRNAs: Possible regulatory roles and therapeutic potential in and gastrointestinal cancers. Pharmacol Res. 2020;161: 105133.

    Article  CAS  PubMed  Google Scholar 

  125. Rezaei S, Mahjoubin-Tehran M, Aghaee-Bakhtiari SH, Jalili A, Movahedpour A, Khan H, et al. Autophagy-related MicroRNAs in chronic lung diseases and lung cancer. Crit Rev Oncol Hematol. 2020;153: 103063.

    Article  PubMed  Google Scholar 

  126. Nahand JS, Karimzadeh MR, Nezamnia M, Fatemipour M, Khatami A, Jamshidi S, et al. The role of miR-146a in viral infection. IUBMB Life. 2020;72(3):343–60.

    Article  CAS  PubMed  Google Scholar 

  127. Savardashtaki A, Shabaninejad Z, Movahedpour A, Sahebnasagh R, Mirzaei H, Hamblin MR. miRNAs derived from cancer-associated fibroblasts in colorectal cancer. Epigenomics. 2019;11(14):1627–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Aghdam AM, Amiri A, Salarinia R, Masoudifar A, Ghasemi F, Mirzaei H. MicroRNAs as, diagnostic prognostic, and therapeutic biomarkers in prostate cancer. Crit Rev Eukaryot Gene Expr. 2019;29(2):127–39.

    Article  PubMed  Google Scholar 

  129. Shabaninejad Z, Yousefi F, Movahedpour A, Ghasemi Y, Dokanehiifard S, Rezaei S, et al. Electrochemical-based biosensors for microRNA detection: nanotechnology comes into view. Anal Biochem. 2019;581: 113349.

    Article  CAS  PubMed  Google Scholar 

  130. Nahand JS, Taghizadeh-Boroujeni S, Karimzadeh M, Borran S, Pourhanifeh MH, Moghoofei M, et al. microRNAs: New prognostic, diagnostic, and therapeutic biomarkers in cervical cancer. J Cell Physiol. 2019;234(10):17064–99.

    Article  CAS  PubMed  Google Scholar 

  131. Guttman M, Rinn JL. Modular regulatory principles of large non-coding RNAs. Nature. 2012;482(7385):339–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Jia H, Osak M, Bogu GK, Stanton LW, Johnson R, Lipovich L. Genome-wide computational identification and manual annotation of human long noncoding RNA genes. RNA (New York, NY). 2010;16(8):1478–87.

    Article  CAS  Google Scholar 

  133. Pauli A, Valen E, Lin MF, Garber M, Vastenhouw NL, Levin JZ, et al. Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Res. 2012;22(3):577–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Swiezewski S, Liu F, Magusin A, Dean C. Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature. 2009;462(7274):799–802.

    Article  CAS  PubMed  Google Scholar 

  135. Houseley J, Rubbi L, Grunstein M, Tollervey D, Vogelauer M. A ncRNA modulates histone modification and mRNA induction in the yeast GAL gene cluster. Mol Cell. 2008;32(5):685–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bernstein HD, Zopf D, Freymann DM, Walter P. Functional substitution of the signal recognition particle 54-kDa subunit by its Escherichia coli homolog. Proc Natl Acad Sci USA. 1993;90(11):5229–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Reeves MB, Davies AA, McSharry BP, Wilkinson GW, Sinclair JH. Complex I binding by a virally encoded RNA regulates mitochondria-induced cell death. Science (New York, NY). 2007;316(5829):1345–8.

    Article  CAS  Google Scholar 

  138. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22(9):1775–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Pang KC, Frith MC, Mattick JS. Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. Trends Genet TIG. 2006;22(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  140. Tano K, Akimitsu N. Long non-coding RNAs in cancer progression. Front Genet. 2012;3:219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends Cell Biol. 2011;21(6):354–61.

    Article  CAS  PubMed  Google Scholar 

  142. Thum T, Condorelli G. Long noncoding RNAs and microRNAs in cardiovascular pathophysiology. Circ Res. 2015;116(4):751–62.

    Article  CAS  PubMed  Google Scholar 

  143. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10(3):155–9.

    Article  CAS  PubMed  Google Scholar 

  144. Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev. 2009;23(13):1494–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Anderson DM, Anderson KM, Chang CL, Makarewich CA, Nelson BR, McAnally JR, et al. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell. 2015;160(4):595–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA (New York, NY). 2013;19(2):141–57.

    Article  CAS  Google Scholar 

  147. Roshani M, Molavizadeh D, Sadeghi S, Jafari A, Dashti F, Mirazimi SMA, et al. Emerging roles of miR-145 in gastrointestinal cancers: A new paradigm. Biomed Pharmacother. 2023;166:115264.

    Article  CAS  PubMed  Google Scholar 

  148. Banasaz B, Zamzam R, Aghadoost D, Golabchi K, Morshedi M, Bayat M, et al. Evaluation of expression pattern of cellular miRNAs (let-7b, miR-29a, miR-126, miR-34a, miR-181a-5p) and IL-6, TNF-α, and TGF-β in patients with pseudoexfoliation syndrome. Pathol Res Pract. 2023;249: 154721.

    Article  CAS  PubMed  Google Scholar 

  149. Jafarzadeh A, Noori M, Sarrafzadeh S, Tamehri Zadeh SS, Nemati M, Chatrabnous N, et al. MicroRNA-383: A tumor suppressor miRNA in human cancer. Front Cell Dev Biol. 2022;10: 955486.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Mohammadi AH, Seyedmoalemi S, Moghanlou M, Akhlagh SA, Talaei Zavareh SA, Hamblin MR, et al. MicroRNAs and synaptic plasticity: from their molecular roles to response to therapy. Mol Neurobiol. 2022;59(8):5084–102.

    Article  CAS  PubMed  Google Scholar 

  151. Mousavi SM, Amin Mahdian SM, Ebrahimi MS, Taghizadieh M, Vosough M, Sadri Nahand J, et al. Microfluidics for detection of exosomes and microRNAs in cancer: State of the art. Mol Ther Nucleic Acids. 2022;28:758–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Letafati A, Najafi S, Mottahedi M, Karimzadeh M, Shahini A, Garousi S, et al. MicroRNA let-7 and viral infections: focus on mechanisms of action. Cell Mol Biol Lett. 2022;27(1):14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Dorraki N, Ghale-Noie ZN, Ahmadi NS, Keyvani V, Bahadori RA, Nejad AS, et al. miRNA-148b and its role in various cancers. Epigenomics. 2021;13(24):1939–60.

    Article  CAS  PubMed  Google Scholar 

  154. Jafarzadeh A, Naseri A, Shojaie L, Nemati M, Jafarzadeh S, Bannazadeh Baghi H, et al. MicroRNA-155 and antiviral immune responses. Int Immunopharmacol. 2021;101(Pt A): 108188.

    Article  CAS  PubMed  Google Scholar 

  155. Jafarzadeh A, Marzban H, Nemati M, Jafarzadeh S, Mahjoubin-Tehran M, Hamblin MR, et al. Dysregulated expression of miRNAs in immune thrombocytopenia. Epigenomics. 2021;13(16):1315–25.

    Article  CAS  PubMed  Google Scholar 

  156. Sadri Nahand J, Shojaie L, Akhlagh SA, Ebrahimi MS, Mirzaei HR, Bannazadeh Baghi H, et al. Cell death pathways and viruses: Role of microRNAs. Mol Ther Nucleic acids. 2021;24:487–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ashrafizadeh M, Zarrabi A, Hashemipour M, Vosough M, Najafi M, Shahinozzaman M, et al. Sensing the scent of death: modulation of microRNAs by curcumin in gastrointestinal cancers. Pharmacol Res. 2020;160: 105199.

    Article  CAS  PubMed  Google Scholar 

  158. Silva GJJ, Bye A, El Azzouzi H, Wisløff U. MicroRNAs as important regulators of exercise adaptation. Prog Cardiovasc Dis. 2017;60(1):130–51.

    Article  PubMed  Google Scholar 

  159. Mohan A, Asakura A. CDK inhibitors for muscle stem cell differentiation and self-renewal. J Phys Fitness Sports Med. 2017;6(2):65–74.

    Article  Google Scholar 

  160. Tucker WJ, Nelson MD, Beaudry RI, Halle M, Sarma S, Kitzman DW, et al. Impact of exercise training on peak oxygen uptake and its determinants in heart failure with preserved ejection fraction. Card Fail Rev. 2016;2(2):95–101.

    PubMed  PubMed Central  Google Scholar 

  161. Pasiakos SM, McClung JP. miRNA analysis for the assessment of exercise and amino acid effects on human skeletal muscle. Adv Nutrit (Bethesda, Md). 2013;4(4):412–7.

    Article  CAS  Google Scholar 

  162. Zacharewicz E, Lamon S, Russell AP. MicroRNAs in skeletal muscle and their regulation with exercise, ageing, and disease. Front Physiol. 2013;4:266.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Davidsen PK, Gallagher IJ, Hartman JW, Tarnopolsky MA, Dela F, Helge JW, et al. High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression. J Appl Physiol. 2011;110(2):309–17.

    Article  PubMed  Google Scholar 

  164. Kirby TJ, McCarthy JJ. MicroRNAs in skeletal muscle biology and exercise adaptation. Free Radical Biol Med. 2013;64:95–105.

    Article  CAS  Google Scholar 

  165. Gagan J, Dey BK, Layer R, Yan Z, Dutta A. MicroRNA-378 targets the myogenic repressor MyoR during myoblast differentiation. J Biol Chem. 2011;286(22):19431–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Carrer M, Liu N, Grueter CE, Williams AH, Frisard MI, Hulver MW, et al. Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378*. Proc Natl Acad Sci USA. 2012;109(38):15330–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Russell AP, Lamon S, Boon H, Wada S, Güller I, Brown EL, et al. Regulation of miRNAs in human skeletal muscle following acute endurance exercise and short-term endurance training. J Physiol. 2013;591(18):4637–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi X, Richardson JA, et al. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell. 2009;17(5):662–73.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Margolis LM, McClung HL, Murphy NE, Carrigan CT, Pasiakos SM. Skeletal muscle myomiR are differentially expressed by endurance exercise mode and combined essential amino acid and carbohydrate supplementation. Front Physiol. 2017;8:182.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Mercatelli N, Fittipaldi S, De Paola E, Dimauro I, Paronetto MP, Jackson MJ, et al. MiR-23-TrxR1 as a novel molecular axis in skeletal muscle differentiation. Sci Rep. 2017;7(1):7219.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Zhou Q, Shi C, Lv Y, Zhao C, Jiao Z, Wang T. Circulating microRNAs in response to exercise training in healthy adults. Front Genet. 2020;11:256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Masi LN, Serdan TD, Levada-Pires AC, Hatanaka E, Silveira LD, Cury-Boaventura MF, et al. Regulation of gene expression by exercise-Related micrornas. Cell Physiol Biochem. 2016;39(6):2381–97.

    Article  CAS  PubMed  Google Scholar 

  173. Fyfe JJ, Bartlett JD, Hanson ED, Stepto NK, Bishop DJ. Endurance training intensity does not mediate interference to maximal lower-body strength gain during short-term concurrent training. Front Physiol. 2016;7:487.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Ogasawara R, Akimoto T, Umeno T, Sawada S, Hamaoka T, Fujita S. MicroRNA expression profiling in skeletal muscle reveals different regulatory patterns in high and low responders to resistance training. Physiol Genomics. 2016;48(4):320–4.

    Article  CAS  PubMed  Google Scholar 

  175. Nielsen S, Åkerström T, Rinnov A, Yfanti C, Scheele C, Pedersen BK, et al. The miRNA plasma signature in response to acute aerobic exercise and endurance training. PLoS One. 2014;9(2): e87308.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Nielsen S, Scheele C, Yfanti C, Akerström T, Nielsen AR, Pedersen BK, et al. Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle. J Physiol. 2010;588(Pt 20):4029–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Drummond MJ, Dreyer HC, Pennings B, Fry CS, Dhanani S, Dillon EL, et al. Skeletal muscle protein anabolic response to resistance exercise and essential amino acids is delayed with aging. J Appl Physiol. 2008;104(5):1452–61.

    Article  CAS  PubMed  Google Scholar 

  178. Mueller M, Breil FA, Lurman G, Klossner S, Flück M, Billeter R, et al. Different molecular and structural adaptations with eccentric and conventional strength training in elderly men and women. Gerontology. 2011;57(6):528–38.

    Article  PubMed  Google Scholar 

  179. Ringholm S, Biensø RS, Kiilerich K, Guadalupe-Grau A, Aachmann-Andersen NJ, Saltin B, et al. Bed rest reduces metabolic protein content and abolishes exercise-induced mRNA responses in human skeletal muscle. Am J Physiol Endocrinol Metab. 2011;301(4):E649–58.

    Article  CAS  PubMed  Google Scholar 

  180. Kim E, Cook-Mills J, Morgan G, Sredni ST, Pachman LM. Increased expression of vascular cell adhesion molecule 1 in muscle biopsy samples from juvenile dermatomyositis patients with short duration of untreated disease is regulated by miR-126. Arthritis Rheum. 2012;64(11):3809–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Shen L, Chen L, Zhang S, Zhang Y, Wang J, Zhu L. MicroRNA-23a reduces slow myosin heavy chain isoforms composition through myocyte enhancer factor 2C (MEF2C) and potentially influences meat quality. Meat Sci. 2016;116:201–6.

    Article  CAS  PubMed  Google Scholar 

  182. Iwasaki H, Imamura T, Morino K, Shimosato T, Tawa M, Ugi S, et al. MicroRNA-494 plays a role in fiber type-specific skeletal myogenesis in human induced pluripotent stem cells. Biochem Biophys Res Commun. 2015;468(1–2):208–13.

    Article  CAS  PubMed  Google Scholar 

  183. Li Y, Chen X, Sun H, Wang H. Long non-coding RNAs in the regulation of skeletal myogenesis and muscle diseases. Cancer Lett. 2018;417:58–64.

    Article  CAS  PubMed  Google Scholar 

  184. Jin JJ, Lv W, Xia P, Xu ZY, Zheng AD, Wang XJ, et al. Long noncoding RNA SYISL regulates myogenesis by interacting with polycomb repressive complex 2. Proc Natl Acad Sci USA. 2018;115(42):E9802–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Zhu M, Liu J, Xiao J, Yang L, Cai M, Shen H, et al. Lnc-mg is a long non-coding RNA that promotes myogenesis. Nat Commun. 2017;8:14718.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Sui Y, Han Y, Zhao X, Li D, Li G. Long non-coding RNA Irm enhances myogenic differentiation by interacting with MEF2D. Cell Death Dis. 2019;10(3):181.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 2011;147(2):358–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Zhou L, Sun K, Zhao Y, Zhang S, Wang X, Li Y, et al. Linc-YY1 promotes myogenic differentiation and muscle regeneration through an interaction with the transcription factor YY1. Nat Commun. 2015;6:10026.

    Article  CAS  PubMed  Google Scholar 

  189. Yu X, Zhang Y, Li T, Ma Z, Jia H, Chen Q, et al. Long non-coding RNA Linc-RAM enhances myogenic differentiation by interacting with MyoD. Nat Commun. 2017;8:14016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Gong C, Li Z, Ramanujan K, Clay I, Zhang Y, Lemire-Brachat S, et al. A long non-coding RNA, LncMyoD, regulates skeletal muscle differentiation by blocking IMP2-mediated mRNA translation. Dev Cell. 2015;34(2):181–91.

    Article  CAS  PubMed  Google Scholar 

  191. Lee S, Kopp F, Chang TC, Sataluri A, Chen B, Sivakumar S, et al. Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell. 2016;164(1–2):69–80.

    Article  CAS  PubMed  Google Scholar 

  192. Montes M, Nielsen MM, Maglieri G, Jacobsen A, Højfeldt J, Agrawal-Singh S, et al. The lncRNA MIR31HG regulates p16(INK4A) expression to modulate senescence. Nat Commun. 2015;6:6967.

    Article  CAS  PubMed  Google Scholar 

  193. Azzalin CM, Reichenbach P, Khoriauli L, Giulotto E, Lingner J. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science (New York, NY). 2007;318(5851):798–801.

    Article  CAS  Google Scholar 

  194. Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012;81:145–66.

    Article  CAS  PubMed  Google Scholar 

  195. Wohlwend M, Laurila PP, Williams K, Romani M, Lima T, Pattawaran P, et al. The exercise-induced long noncoding RNA CYTOR promotes fast-twitch myogenesis in aging. Science translational medicine. 2021;13(623):eabc7367.

  196. Chandel NS. Evolution of mitochondria as signaling organelles. Cell Metab. 2015;22(2):204–6.

    Article  CAS  PubMed  Google Scholar 

  197. Spinelli JB, Haigis MC. The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol. 2018;20(7):745–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Bulthuis EP, Adjobo-Hermans MJW, Willems P, Koopman WJH. Mitochondrial morphofunction in mammalian cells. Antioxid Redox Signal. 2019;30(18):2066–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Eisner V, Picard M, Hajnóczky G. Mitochondrial dynamics in adaptive and maladaptive cellular stress responses. Nat Cell Biol. 2018;20(7):755–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Olesen J, Kiilerich K, Pilegaard H. PGC-1alpha-mediated adaptations in skeletal muscle. Pflugers Arch. 2010;460(1):153–62.

    Article  CAS  PubMed  Google Scholar 

  201. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998;92(6):829–39.

    Article  CAS  PubMed  Google Scholar 

  202. Pilegaard H, Saltin B, Neufer PD. Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle. J Physiol. 2003;546(Pt 3):851–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Handschin C, Rhee J, Lin J, Tarr PT, Spiegelman BM. An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle. Proc Natl Acad Sci USA. 2003;100(12):7111–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Trewin AJ, Silver J, Dillon HT, Della Gatta PA, Parker L, Hiam DS, et al. Long non-coding RNA Tug1 modulates mitochondrial and myogenic responses to exercise in skeletal muscle. BMC Biol. 2022;20(1):164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Bonilauri B, Dallagiovanna B. Long non-coding RNAs Are differentially expressed after different exercise training programs. Front Physiol. 2020;11: 567614.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Guo M, Qiu J, Shen F, Wang S, Yu J, Zuo H, et al. Comprehensive analysis of circular RNA profiles in skeletal muscles of aging mice and after aerobic exercise intervention. Aging. 2020;12(6):5071–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Vilades D, Martínez-Camblor P, Ferrero-Gregori A, Bär C, Lu D, Xiao K, et al. Plasma circular RNA hsa_circ_0001445 and coronary artery disease: performance as a biomarker. FASEB J. 2020;34(3):4403–14.

    Article  CAS  PubMed  Google Scholar 

  208. Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nat Biotechnol. 2014;32(5):453–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495(7441):333–8.

    Article  CAS  PubMed  Google Scholar 

  210. Dou Y, Cha DJ, Franklin JL, Higginbotham JN, Jeppesen DK, Weaver AM, et al. Circular RNAs are down-regulated in KRAS mutant colon cancer cells and can be transferred to exosomes. Sci Rep. 2016;6:37982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Jiang F, Hong F, Shah MW, Shen X. Circular RNAs as diagnostic biomarkers in gastric cancer: A meta-analysis review. Pathol Res Pract. 2019;215(6): 152419.

    Article  CAS  PubMed  Google Scholar 

  212. Rybak-Wolf A, Stottmeister C, Glažar P, Jens M, Pino N, Giusti S, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell. 2015;58(5):870–85.

    Article  CAS  PubMed  Google Scholar 

  213. Sonnenschein K, Wilczek AL, de Gonzalo-Calvo D, Pfanne A, Derda AA, Zwadlo C, et al. Serum circular RNAs act as blood-based biomarkers for hypertrophic obstructive cardiomyopathy. Sci Rep. 2019;9(1):20350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Blair SN, Kampert JB, Kohl HW 3rd, Barlow CE, Macera CA, Paffenbarger RS Jr, et al. Influences of cardiorespiratory fitness and other precursors on cardiovascular disease and all-cause mortality in men and women. JAMA. 1996;276(3):205–10.

    Article  CAS  PubMed  Google Scholar 

  215. Ekelund LG, Haskell WL, Johnson JL, Whaley FS, Criqui MH, Sheps DS. Physical fitness as a predictor of cardiovascular mortality in asymptomatic North American men. The lipid research clinics mortality follow-up study. N Engl J Med. 1988;319(21):1379–84.

    Article  CAS  PubMed  Google Scholar 

  216. Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med. 2002;346(11):793–801.

    Article  PubMed  Google Scholar 

  217. Bouchard C, An P, Rice T, Skinner JS, Wilmore JH, Gagnon J, et al. Familial aggregation ofV o 2 max response to exercise training: results from the HERITAGE family study. J Appl Physiol. 1999;87(3):1003–8.

    Article  CAS  PubMed  Google Scholar 

  218. Donnellan E, Phelan D. Biomarkers of cardiac stress and injury in athletes: what do they mean? Curr Heart Fail Rep. 2018;15(2):116–22.

    Article  CAS  PubMed  Google Scholar 

  219. Neri Serneri GG, Boddi M, Modesti PA, Cecioni I, Coppo M, Padeletti L, et al. Increased cardiac sympathetic activity and insulin-like growth factor-I formation are associated with physiological hypertrophy in athletes. Circ Res. 2001;89(11):977–82.

    Article  CAS  PubMed  Google Scholar 

  220. Poehlman ET, Rosen CJ, Copeland KC. The influence of endurance training on insulin-like growth factor-1 in older individuals. Metabolism: clinical and experimental. 1994;43(11):1401–5.

  221. Meinecke A, Mitzka S, Just A, Cushman S, Stojanović SD, Xiao K, et al. Cardiac endurance training alters plasma profiles of circular RNA MBOAT2. Am J Physiol Heart Circ Physiol. 2020;319(1):H13–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Junxiong Zhang, Zhongxin Tian, and Chao Qin contributed to manuscript drafting and data collection. All the authors approved the final paper. Mohammad Reza Momeni oversaw the study.

Corresponding authors

Correspondence to Junxiong Zhang, Zhongxin Tian or Mohammad Reza Momeni.

Ethics declarations

Conflict of  interests

The authors declare no conflict of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Tian, Z., Qin, C. et al. The effects of exercise on epigenetic modifications: focus on DNA methylation, histone modifications and non-coding RNAs. Human Cell 37, 887–903 (2024). https://doi.org/10.1007/s13577-024-01057-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-024-01057-y

Keywords

Navigation