[go: up one dir, main page]

Skip to main content

Advertisement

Log in

MiR-3677-3p promotes development and sorafenib resistance of hepatitis B-related hepatocellular carcinoma by inhibiting FOXM1 ubiquitination

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Being encoded by hepatitis B, hepatitis B X (HBx) protein plays crucial roles in hepatitis B-related hepatocellular carcinoma (HCC) occurrence, development, and metastasis. miRNAs also function in the progression of hepatitis B-related HCC. Hence, the objective of this study was to explore the impacts of miR-3677-3p on tumor progression and sorafenib resistance in hepatitis B-related HCC and the related underlying mechanisms. Our research revealed that miR-3677-3p and FOXM1 was up-regulated and FBXO31 was down-regulated in HBV+ HCC cells and tumor tissues from nude mice. After miR-3677-3p overexpression, cell proliferative, invasive, and migrating potentials and stemness-related protein (CD133, EpCAM, and OCT4) levels were enhanced, and cell apoptosis was reduced in Huh7 + HBx/SR cells and HepG2.2.15/SR cells. Besides, miR-3677-3p promoted the drug resistance of Huh7 + HBx/SR cells and HepG2.2.15/SR cells to sorafenib and lifted IC50. In vivo experiments, miR-3677-3p down-regulation suppressed the tumor growth in the hepatitis B HCC nude mouse models. Mechanistically, miR-3677-3p targeted and negatively-regulated FBXO31 and FBXO31 could enrich FOXM1 protein. miR-3677-3p down-regulation or FBXO31 overexpression promoted the ubiquitylation of FOXM1. In a word, miR-3677-3p bound to FBXO31 and inhibited FBXO31 expression, thus curtailing the ubiquitylation degradation of FOXM1, contributing to HCC development and sorafenib resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Gao YX, Yang TW, Yin JM, et al. Progress and prospects of biomarkers in primary liver cancer (Review). Int J Oncol. 2020;57:54–66.

    PubMed  Google Scholar 

  3. Wege H, Schulze K, von Felden J, Calderaro J, Reig M. Rare liver tumors working group of the European Reference Network on Hepatological D. Rare variants of primary liver cancer: fibrolamellar, combined, and sarcomatoid hepatocellular carcinomas. Eur J Med Genet. 2021;64:104313.

    Article  CAS  PubMed  Google Scholar 

  4. Hartke J, Johnson M, Ghabril M. The diagnosis and treatment of hepatocellular carcinoma. Semin Diagn Pathol. 2017;34:153–9.

    Article  PubMed  Google Scholar 

  5. Kulik L, El-Serag HB. Epidemiology and management of hepatocellular carcinoma. Gastroenterology. 2019;156(477–91): e1.

    Google Scholar 

  6. Wang Z, Wu Z, Huang P. The function of miRNAs in hepatocarcinogenesis induced by hepatitis B virus X protein (review). Oncol Rep. 2017;38:652–64.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang XD, Wang Y, Ye LH. Hepatitis B virus X protein accelerates the development of hepatoma. Cancer Biol Med. 2014;11:182–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019;16:589–604.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Li ZJ, Dai HQ, Huang XW, et al. Artesunate synergizes with sorafenib to induce ferroptosis in hepatocellular carcinoma. Acta Pharmacol Sin. 2021;42:301–10.

    Article  CAS  PubMed  Google Scholar 

  10. Tang W, Chen Z, Zhang W, et al. The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects. Signal Transduct Target Ther. 2020;5:87.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lin X, Zuo S, Luo R, et al. HBX-induced miR-5188 impairs FOXO1 to stimulate beta-catenin nuclear translocation and promotes tumor stemness in hepatocellular carcinoma. Theranostics. 2019;9:7583–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gramantieri L, Pollutri D, Gagliardi M, et al. MiR-30e-3p influences tumor phenotype through MDM2/TP53 axis and predicts sorafenib resistance in hepatocellular carcinoma. Cancer Res. 2020;80:1720–34.

    Article  CAS  PubMed  Google Scholar 

  13. Qin L, Huang J, Wang G, et al. Integrated analysis of clinical significance and functional involvement of microRNAs in hepatocellular carcinoma. J Cell Physiol. 2019;234:23581–95.

    Article  CAS  PubMed  Google Scholar 

  14. Li Y, Zhou Y, Ma L, Liu D, Dai Z, Shen J. miR-3677-3p promotes hepatocellular carcinoma progression via inhibiting GSK3beta. Acta Biochim Biophys Sin. 2020;52:1404–12.

    Article  CAS  PubMed  Google Scholar 

  15. He H, Dai J, Feng J, et al. FBXO31 modulates activation of hepatic stellate cells and liver fibrogenesis by promoting ubiquitination of Smad7. J Cell Biochem. 2020;121(8–9):3711–9.

  16. Tan Y, Liu D, Gong J, Liu J, Huo J. The role of F-box only protein 31 in cancer. Oncol Lett. 2018;15:4047–52.

    PubMed  PubMed Central  Google Scholar 

  17. Huang HL, Zheng WL, Zhao R, Zhang B, Ma WL. FBXO31 is down-regulated and may function as a tumor suppressor in hepatocellular carcinoma. Oncol Rep. 2010;24:715–20.

    CAS  PubMed  Google Scholar 

  18. Wierstra I. The transcription factor FOXM1 (Forkhead box M1): proliferation-specific expression, transcription factor function, target genes, mouse models, and normal biological roles. Adv Cancer Res. 2013;118:97–398.

    Article  CAS  PubMed  Google Scholar 

  19. Jeffery JM, Kalimutho M, Johansson P, Cardenas DG, Kumar R, Khanna KK. FBXO31 protects against genomic instability by capping FOXM1 levels at the G2/M transition. Oncogene. 2017;36:1012–22.

    Article  CAS  PubMed  Google Scholar 

  20. Li W, Dong X, He C, et al. LncRNA SNHG1 contributes to sorafenib resistance by activating the Akt pathway and is positively regulated by miR-21 in hepatocellular carcinoma cells. J Exp Clin Cancer Res. 2019;38:183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nio K, Yamashita T, Kaneko S. The evolving concept of liver cancer stem cells. Mol Cancer. 2017;16:4.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yao B, Li Y, Niu Y, et al. Hypoxia-induced miR-3677-3p promotes the proliferation, migration and invasion of hepatocellular carcinoma cells by suppressing SIRT5. J Cell Mol Med. 2020;24:8718–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Feng Y, Jiang W, Zhao W, Lu Z, Gu Y, Dong Y. miR-124 regulates liver cancer stem cells expansion and sorafenib resistance. Exp Cell Res. 2020;394: 112162.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Z, Tan X, Luo J, Yao H, Si Z, Tong JS. The miR-30a-5p/CLCF1 axis regulates sorafenib resistance and aerobic glycolysis in hepatocellular carcinoma. Cell Death Dis. 2020;11:902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu J, Lv L, Gong J, et al. Overexpression of F-box only protein 31 predicts poor prognosis and deregulates p38alpha- and JNK-mediated apoptosis in esophageal squamous cell carcinoma. Int J Cancer. 2018;142:145–55.

    Article  CAS  PubMed  Google Scholar 

  26. Hu G, Yan Z, Zhang C, et al. FOXM1 promotes hepatocellular carcinoma progression by regulating KIF4A expression. J Exp Clin Cancer Res. 2019;38:188.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chou LF, Chen CY, Yang WH, et al. Suppression of hepatocellular carcinoma progression through FOXM1 and EMT inhibition via hydroxygenkwanin-induced miR-320a expression. Biomolecules. 2019;10:20.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Meng FD, Wei JC, Qu K, et al. FoxM1 overexpression promotes epithelial-mesenchymal transition and metastasis of hepatocellular carcinoma. World J Gastroenterol. 2015;21:196–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Su WL, Chuang SC, Wang YC, et al. Expression of FOXM1 and Aurora-A predicts prognosis and sorafenib efficacy in patients with hepatocellular carcinoma. Cancer Biomark. 2020;28:341–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yan D, Yan X, Dai X, et al. Activation of AKT/AP1/FoxM1 signaling confers sorafenib resistance to liver cancer cells. Oncol Rep. 2019;42:785–96.

    CAS  PubMed  Google Scholar 

  31. Karunarathna U, Kongsema M, Zona S, et al. OTUB1 inhibits the ubiquitination and degradation of FOXM1 in breast cancer and epirubicin resistance. Oncogene. 2016;35:1433–44.

    Article  CAS  PubMed  Google Scholar 

  32. Kongsema M, Zona S, Karunarathna U, et al. RNF168 cooperates with RNF8 to mediate FOXM1 ubiquitination and degradation in breast cancer epirubicin treatment. Oncogenesis. 2016;5: e252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang Z, Liu W, Bao X, et al. USP39 facilitates breast cancer cell proliferation through stabilization of FOXM1. Am J Cancer Res. 2022;12:3644–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang WD, Shang Y, Wang C, et al. c-FLIP promotes drug resistance in non-small-cell lung cancer cells via upregulating FoxM1 expression. Acta Pharmacol Sin. 2022;43:2956–66.

    Article  CAS  PubMed  Google Scholar 

  35. Shi W, Feng L, Dong S, et al. FBXL6 governs c-MYC to promote hepatocellular carcinoma through ubiquitination and stabilization of HSP90AA1. Cell Commun Signal. 2020;18:100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang L, Chen J, Ning D, et al. FBXO22 promotes the development of hepatocellular carcinoma by regulating the ubiquitination and degradation of p21. J Exp Clin Cancer Res. 2019;38:101.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhu H, Yan F, Yuan T, et al. USP10 promotes proliferation of hepatocellular carcinoma by deubiquitinating and stabilizing YAP/TAZ. Cancer Res. 2020;80:2204–16.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate Hunan Provincial Brain Hospital, Changsha Science and Technology Bureau, Hunan University of Traditional Chinese Medicine for supporting this study.

Funding

This study was funded by the Natural Science Foundation of Changsha (No. kq2014189).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangya Quan.

Ethics declarations

Conflict of interest

None.

Ethical approval

All the animal experiments in the current research were conducted in accordance with Guidelines for the care and use of laboratory animals (formulated by the Chinese Commission for Institutional Animal Protection and Use) and approved by the Animal Care Ethics Committee of the Brain Hospital of Hunan Province (approval number: 2019K033).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 135331 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, H., Zhou, J., Cheng, F. et al. MiR-3677-3p promotes development and sorafenib resistance of hepatitis B-related hepatocellular carcinoma by inhibiting FOXM1 ubiquitination. Human Cell 36, 1773–1789 (2023). https://doi.org/10.1007/s13577-023-00945-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-00945-z

Keywords

Navigation