[go: up one dir, main page]

Skip to main content
Log in

Stochastic Approach to Epidemic Spreading

  • Statistical
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

We analyze four models of epidemic spreading using a stochastic approach in which the primary stochastic variables are the numbers of individuals in each class. The stochastic approach is described by a master equation and the transition rates for each process such as infection or recovery are set up by using the law of mass action. We perform numerical simulations as well as numerical integration of the evolution equations for the average number of each class of individuals. The onset of the epidemic spreading is obtained by a linear analysis of the disease free state, from which follows the initial exponential increase of the infected and the frequency of new cases. The order parameter and the variance in the number of individuals are also obtained characterizing the onset of epidemic spreading as a critical phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N.T.J. Bailey. The Mathematical Theory of Epidemics (Hafner, New York, 1957)

    Google Scholar 

  2. R.M. Anderson, R.M. May. Infectious Diseases of Humans (Oxford University Press, Oxford, 1991)

    Google Scholar 

  3. E. Renshaw. Modelling Biological Population in Space and Time (Cambridge University Press, Cambridge, 1991)

    Book  Google Scholar 

  4. A. Hastings. Population Dynamics (Springer, New York, 1997)

    Google Scholar 

  5. M.J. Keeling, P. Rohani. Modeling Infectious Diseases (Princeton University Press, Princeton, 2008)

    MATH  Google Scholar 

  6. M.S. Bartlett, Stochastic Processes, University of North Carolina (1947)

  7. M.S. Bartlett, . J. R. Soc. Stat. B. 11, 211 (1949)

    Google Scholar 

  8. N.T. Bailey, . Biometrika. 37, 193 (1950)

    Article  MathSciNet  Google Scholar 

  9. N.T. Bailey, . Biometrika. 40, 177 (1953)

    Article  MathSciNet  Google Scholar 

  10. W.O. Kermack, A.G. McKendrick, . Proc. R. Soc. A. 115, 700 (1927)

    ADS  Google Scholar 

  11. P. Wittle, . Biometrika. 42, 116 (1955)

    MathSciNet  Google Scholar 

  12. K. Dietz, in . Mathematical Models in Medicine, ed. by J. Berger, W.J. Büler, R. Repges, P. Tautu (Springer, Berlin, 1976), p. 1

  13. L.F. Olsen, G.L. Truty, W.M. Schaffer, . Theor. Popul. Biol. 33, 344 (1988)

    Article  Google Scholar 

  14. R.M. Nisbet, W.C.S. Gurney. Modelling Fluctuating Populations (Blackburn, Caldwell, 1982)

    MATH  Google Scholar 

  15. J.P. Gabriel, C. Lefèvre, P. Picard (eds.), Stochastic Processes in Epidemic Theory (Springer, Berlin, 1990)

  16. B.T. Grenfell, A.P. Dobson (eds.), Ecology of Infectious Diseases in Natural Populations (Cambridge University Press, Cambridge, 1995)

  17. H. Andersson, T. Britton. Stochastic Epidemic Models and Their Statistical Analysis (Springer, New York, 2000)

    Book  Google Scholar 

  18. J.H. Matis, T.R. Kiffe. Stochastic Population Models (Springer, New York, 2000)

    Book  Google Scholar 

  19. L.J.S. Allen. Stochastic Population and Epidemic Models (Springer, Cham, 2015)

    Book  Google Scholar 

  20. T. Britton, E. Pardoux (eds.), Stochastic Epidemic Models with Inference (Springer, Cham, 2019)

  21. T. Tomé, M.J. de Oliveira, . Phys. Rev. E. 79, 061128 (2009)

    Article  ADS  Google Scholar 

  22. T. Tomé, M.J. de Oliveira. Stochastic Dynamics and Irreversibility (Springer, Heidelberg, 2015)

    Book  Google Scholar 

  23. T.E. Harris, . Ann. Probab. 2, 969 (1974)

    Article  Google Scholar 

  24. P. Grassberger, . Math. Biosci. 62, 157 (1983)

    Article  Google Scholar 

  25. T. Ohtsuki, T. Keyes, . Phys. Rev. A. 33, 1223 (1986)

    Article  ADS  Google Scholar 

  26. J. Satulovsky, T. Tomé, . Phys. Rev E. 49, 5073 (1994)

    Article  ADS  Google Scholar 

  27. R. Durrett, in Spatial epidemic models. Epidemic Models, ed. by D. Mollison (Cambridge University Press, Cambridge, 1995), p. 187

  28. T. Antal, M. Droz, A. Lipowski, G. Odor, . Phys. Rev. E. 64, 036118 (2001)

    Article  ADS  Google Scholar 

  29. S.M. Dammer, H. Hinrichsen, . Phys. Rev. E. 68, 016114 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  30. D.R. de Souza, T. Tomé, . Physica A. 389, 1142 (2010)

    Article  ADS  Google Scholar 

  31. T. Tomé, M.J. de Oliveira, . J. Phys. A. 44, 095005 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  32. D.R. de Souza, T. Tomé, S.T.R. Pinho, F.R. Barreto, M.J. de Oliveira, . Physical Review E. 87, 012709 (2013)

    Article  ADS  Google Scholar 

  33. A.H.O. Wada, T. Tomé, M.J. de Oliveira, J. Stat. Mech. P04014 (2015)

  34. F.M. Ruziska, T. Tomé, M.J. de Oliveira, . Physica. 467, 21 (2017)

    Article  MathSciNet  Google Scholar 

  35. N.G. van Kampen. Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981)

    MATH  Google Scholar 

  36. N.G. van Kampen, . Can. J. Phys. 39, 551 (1961)

    Article  ADS  Google Scholar 

  37. N.G. van Kampen, . Biometrika. 60, 419 (1973)

    Article  Google Scholar 

  38. D.R. McNeil, . Biometrika. 59, 494 (1972)

    Article  MathSciNet  Google Scholar 

  39. R. Ross. The Prevention of Malaria (Murray, London, 1911)

    Google Scholar 

  40. J.A.P. Heesterbeek, M.G. Roberts, . Phil. Trans. R. Soc. B. 370, 20140307 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tânia Tomé.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomé, T., de Oliveira, M.J. Stochastic Approach to Epidemic Spreading. Braz J Phys 50, 832–843 (2020). https://doi.org/10.1007/s13538-020-00800-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-020-00800-8

Keywords

Navigation