Abstract
We analyze four models of epidemic spreading using a stochastic approach in which the primary stochastic variables are the numbers of individuals in each class. The stochastic approach is described by a master equation and the transition rates for each process such as infection or recovery are set up by using the law of mass action. We perform numerical simulations as well as numerical integration of the evolution equations for the average number of each class of individuals. The onset of the epidemic spreading is obtained by a linear analysis of the disease free state, from which follows the initial exponential increase of the infected and the frequency of new cases. The order parameter and the variance in the number of individuals are also obtained characterizing the onset of epidemic spreading as a critical phase transition.
Similar content being viewed by others
References
N.T.J. Bailey. The Mathematical Theory of Epidemics (Hafner, New York, 1957)
R.M. Anderson, R.M. May. Infectious Diseases of Humans (Oxford University Press, Oxford, 1991)
E. Renshaw. Modelling Biological Population in Space and Time (Cambridge University Press, Cambridge, 1991)
A. Hastings. Population Dynamics (Springer, New York, 1997)
M.J. Keeling, P. Rohani. Modeling Infectious Diseases (Princeton University Press, Princeton, 2008)
M.S. Bartlett, Stochastic Processes, University of North Carolina (1947)
M.S. Bartlett, . J. R. Soc. Stat. B. 11, 211 (1949)
N.T. Bailey, . Biometrika. 37, 193 (1950)
N.T. Bailey, . Biometrika. 40, 177 (1953)
W.O. Kermack, A.G. McKendrick, . Proc. R. Soc. A. 115, 700 (1927)
P. Wittle, . Biometrika. 42, 116 (1955)
K. Dietz, in . Mathematical Models in Medicine, ed. by J. Berger, W.J. Büler, R. Repges, P. Tautu (Springer, Berlin, 1976), p. 1
L.F. Olsen, G.L. Truty, W.M. Schaffer, . Theor. Popul. Biol. 33, 344 (1988)
R.M. Nisbet, W.C.S. Gurney. Modelling Fluctuating Populations (Blackburn, Caldwell, 1982)
J.P. Gabriel, C. Lefèvre, P. Picard (eds.), Stochastic Processes in Epidemic Theory (Springer, Berlin, 1990)
B.T. Grenfell, A.P. Dobson (eds.), Ecology of Infectious Diseases in Natural Populations (Cambridge University Press, Cambridge, 1995)
H. Andersson, T. Britton. Stochastic Epidemic Models and Their Statistical Analysis (Springer, New York, 2000)
J.H. Matis, T.R. Kiffe. Stochastic Population Models (Springer, New York, 2000)
L.J.S. Allen. Stochastic Population and Epidemic Models (Springer, Cham, 2015)
T. Britton, E. Pardoux (eds.), Stochastic Epidemic Models with Inference (Springer, Cham, 2019)
T. Tomé, M.J. de Oliveira, . Phys. Rev. E. 79, 061128 (2009)
T. Tomé, M.J. de Oliveira. Stochastic Dynamics and Irreversibility (Springer, Heidelberg, 2015)
T.E. Harris, . Ann. Probab. 2, 969 (1974)
P. Grassberger, . Math. Biosci. 62, 157 (1983)
T. Ohtsuki, T. Keyes, . Phys. Rev. A. 33, 1223 (1986)
J. Satulovsky, T. Tomé, . Phys. Rev E. 49, 5073 (1994)
R. Durrett, in Spatial epidemic models. Epidemic Models, ed. by D. Mollison (Cambridge University Press, Cambridge, 1995), p. 187
T. Antal, M. Droz, A. Lipowski, G. Odor, . Phys. Rev. E. 64, 036118 (2001)
S.M. Dammer, H. Hinrichsen, . Phys. Rev. E. 68, 016114 (2003)
D.R. de Souza, T. Tomé, . Physica A. 389, 1142 (2010)
T. Tomé, M.J. de Oliveira, . J. Phys. A. 44, 095005 (2011)
D.R. de Souza, T. Tomé, S.T.R. Pinho, F.R. Barreto, M.J. de Oliveira, . Physical Review E. 87, 012709 (2013)
A.H.O. Wada, T. Tomé, M.J. de Oliveira, J. Stat. Mech. P04014 (2015)
F.M. Ruziska, T. Tomé, M.J. de Oliveira, . Physica. 467, 21 (2017)
N.G. van Kampen. Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981)
N.G. van Kampen, . Can. J. Phys. 39, 551 (1961)
N.G. van Kampen, . Biometrika. 60, 419 (1973)
D.R. McNeil, . Biometrika. 59, 494 (1972)
R. Ross. The Prevention of Malaria (Murray, London, 1911)
J.A.P. Heesterbeek, M.G. Roberts, . Phil. Trans. R. Soc. B. 370, 20140307 (2015)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Tomé, T., de Oliveira, M.J. Stochastic Approach to Epidemic Spreading. Braz J Phys 50, 832–843 (2020). https://doi.org/10.1007/s13538-020-00800-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13538-020-00800-8