Abstract
The success of hand-crafted machine learning systems in many applications raises the question of making machine learning algorithms more autonomous, i.e., to reduce the requirement of expert input to a minimum. We discuss two strategies towards this goal: (1) automated optimization of hyperparameters (including mechanisms for feature selection, preprocessing, model selection, etc) and (2) the development of algorithms with reduced sets of hyperparameters. Since many research directions (e.g., deep learning), show a tendency towards increasingly complex algorithms with more and more hyperparamters, the demand for both of these strategies continuously increases. We review recent hyperparameter optimization methods and discuss data-driven approaches to avoid the introduction of hyperparameters using unsupervised learning. We end in discussing how these complementary strategies can work hand-in-hand, representing a very promising approach towards autonomous machine learning.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Adams RP, Wallach HM, Ghahramani Z (2009) Learning the structure of deep sparse graphical models. ArXiv preprint, arXiv:1001.0160
Aha DW (1992) Generalizing from case studies: a case study. In: ML, pp 1–10
Bardenet R, Brendel M, Kégl B, Sebag M (2013) Collaborative hyperparameter tuning. In: Proceeidngs of ICML’13
Bengio Y (2000) Gradient-based optimization of hyperparameters. Neural Comput 12(8):1889–1900
Bergstra J, Bardenet R, Bengio Y, Kégl B (2011) Algorithms for hyper-parameter optimization. In: Proceedings of NIPS’11
Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. JMLR 13:281–305
Bergstra J, Cox D (2013) Hyperparameter optimization and boosting for classifying facial expressions: How good can a “null” model be? ArXiv preprint, arXiv:1306.3476
Bergstra J, Yamins D, Cox DD (2013) Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures. In: Proceedings of ICML’13
Berkes P, Turner R, Sahani M (2008) On sparsity and overcompleteness in image models. In: Proceedings of NIPS’08, vol 21
Blockeel H (2006) Experiment databases: a novel methodology for experimental research. In: Knowledge discovery in inductive databases, pp 72–85. Springer
Brazdil P, Gama J, Henery B (1994) Characterizing the applicability of classification algorithms using meta-level learning. In: Proceedings of ECML’94, pp 83–102
Brochu E, Cora, V., de Freitas, N (2010) A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. ArXiv preprint, arXiv:1012.2599
Castiello C, Castellano G, Fanelli AM (2005) Meta-data: characterization of input features for meta-learning. In: Modeling decisions for artificial intelligence, pp 457–468. Springer
Ciresan D, Meier U, Schmidhuber J (2012) Multi-column deep neural networks for image classification. In: Proceedings of CVPR’12, pp 3642–3649. IEEE
Dayan P (1997) Recognition in hierarchical models. In: Foundations of computational mathematics, pp 43–62. Springer
Domhan T, Springenberg T, Hutter F (2014) Extrapolating learning curves of deep neural networks. In: ICML 2014 AutoML Workshop
Eggensperger K, Feurer M, Hutter F, Bergstra J, Snoek J, Hoos H, Leyton-Brown K (2013) Towards an empirical foundation for assessing Bayesian optimization of hyperparameters. In: NIPS workshop on Bayesian Optimization in Theory and Practice
Engels R, Theusinger C (1998) Using a data metric for preprocessing advice for data mining applications. In: Proceedings of ECAI’98, pp 430–434
Fawcett C, Hoos H (2013) Analysing differences between algorithm configurations through ablation. In: Proceedings of MIC’13, pp 123–132
Feurer M, Springenberg T, Hutter F (2015) Initializing Bayesian hyperparameter optimization via meta-learning. In: Proceedings of AAAI’15
Gomes TAF, Prudêncio RBC, Soares C, Rossi ALD (2012) Carvalho, A.C.P.L.F.: combining meta-learning and search techniques to select parameters for support vector machines. Neurocomputing 75(1):3–13
Goodfellow I, Courville AC, Bengio Y (2012) Large-scale feature learning with spike-and-slab sparse coding. In: Proceedings of ICML’12
Griffiths TL, Kemp C, Tenenbaum JB (2008) Bayesian models of cognition. In: Sun R (ed) Cambridge Handbook of Computational Psychology. Cambridge University Press, New York, NY, USA
Gross S, Mokbel B, Hammer B, Pinkwart N (2012) Feedback provision strategies in intelligent tutoring systems based on clustered solution spaces. In: Desel J, Haake JM, Spannagel C (eds) DeLFI 2012: Die 10. e-Learning Fachtagung Informatik, pp 27–38. Köllen, Hagen, Germany
Guerra SB, Prudłncio RB, Ludermir TB (2008) Predicting the performance of learning algorithms using support vector machines as meta-regressors. In: Proceedings of ICANN’08, pp 523–532
Guo X, Yang J, Wu C, Wang C, Liang Y (2008) A novel LS-SVMs hyper-parameter selection based on particle swarm optimization. Neurocomputing 71(16):3211–3215
Henery RJ (1994) Methods for comparison. In: Michie D, Spiegelhalter DJ, Taylor CC (eds) Machine learning, neural and statistical classification. Ellis Horwood, New York
Hinton GE, Osindero S, Teh Y (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7)
Ho TK, Basu M (2002) Complexity measures of supervised classification problems. IEEE Trans Pattern Anal Mach Intell 24(3):289–300
Hutter F, Hoos H, Leyton-Brown K (2014) An efficient approach for assessing hyperparameter importance. In: Proceeding of ICML’14, pp 754–762
Hutter F, Hoos H, Leyton-Brown K, Stützle T (2009) ParamILS: an automatic algorithm configuration framework. JAIR 36(1):267–306
Hutter F, Hoos HH, Leyton-Brown K (2011) Sequential model-based optimization for general algorithm configuration. In: Proceeidngs of LION-5
Hutter F, Hoos HH, Leyton-Brown K (2013) Identifying key algorithm parameters and instance features using forward selection. In: Proceedings of LION-7
Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black box functions. Journal of Global Optim 13:455–492
King RD, Feng C, Sutherland A (1995) Statlog: comparison of classification algorithms on large real-world problems. Appl Artif Intell 9(3):289–333
Kingma DP, Mohamed S, Rezende DJ, Welling M (2014) Semi-supervised learning with deep generative models. In: Proceedings of NIPS’14, pp 3581–3589
Kulick J, Toussaint M, Lang T, Lopes M (2013) Active learning for teaching a robot grounded relational symbols. In: Proceedings of IJCAI’13
LeCun Y, Bengio Y (1995) Convolutional networks for images, speech, and time series. Handb Brain Theory Neural Netw 3361:310
LeCun Y, Bottou L, Bengio Y, Haffner P (2001) Gradient-based learning applied to document recognition. In: Intelligent Signal Processing, pp 306–351. IEEE Press
LeCun Y, Kavukcuoglu K, Farabet C (2010) Convolutional networks and applications in vision. Proceeidngs of ISCAS’10 pp 253–6 (2010)
Lee TS, Mumford D (2003) Hierarchical Bayesian inference in the visual cortex. J Opt Soc Am A Opt Image Sci Vis 20(7):1434–1448
Lemke C, Budka M, Gabrys B (2013) Metalearning: a survey of trends and technologies. Artif. Intell. Rev. pp 1–14
Lücke J, Sahani M (2008) Maximal causes for non-linear component extraction. JMLR 9:1227–67
Maron O, Moore A (1994) Hoeffding races: accelerating model selection search for classification and function approximation. In: Proceeding of NIPS’94, pp 59–66
Martius G, Der R, Ay N (2013) Information driven self-organization of complex robotic behaviors. PLoS One 8(5), e63,400. DOI10.1371/journal.pone.0063400
Mohamed S, Heller K, Ghahramani Z (2012) Evaluating Bayesian and L1 approaches for sparse unsupervised learning. In: Proceedings of ICML’12
Murray I, Adams RP (2010) Slice sampling covariance hyperparameters of latent Gaussian models. In: Proceedings of NIPS’10, pp 1723–1731
Pasemann F (2013) Self-regulating neurons in the sensorimotor loop. In: Rojas I, Joya G, Gabestany J (eds) Advances in Computational Intelligence, vol 7902., Lecture Notes in Computer ScienceSpringer, Berlin Heidelberg, pp 481–491
Peng Y, Flach PA, Brazdil P, Soares C (2002) Decision tree-based data characterization for meta-learning. In: ECML/PKDD’02 Workshop on Integration and Collaboration Aspects of Data Mining, Decision Support and Meta-Learning, pp 111–122
Pfahringer B, Bensusan H, Giraud-Carrier C (2000) Meta-learning by landmarking various learning algorithms. In: Proceedings of ICML’00, pp 743–750
Pinto F, Soares C, Mendes-Moreira J (2014) A framework to decompose and develop metafeatures. In: ECAI 2014 Workshop on Meta-Learning and Algorithm Selection, p 32
Reif M (2012) A comprehensive dataset for evaluating approaches of various meta-learning tasks. In: Proceedings of ICPRAM’12, vol 1, pp 273–276
Reif M, Shafait F, Dengel A (2012) Meta-learning for evolutionary parameter optimization of classifiers. Mach Learn 87(3):357–380
Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117
Schonlau M, Welch WJ, Jones DR (1998) Global versus local search in constrained optimization of computer models. In: New developments and applications in experimental design, vol 34, pp 11–25. Institute of Mathematical Statistics, Hayward, California
Sheikh AS, Shelton JA, Lücke J (2014) A truncated em approach for spike-and-slab sparse coding. JMLR 15:2653–2687
Sidenbladh H, Black MJ, Fleet DJ (2000) Stochastic tracking of 3d human figures using 2d image motion. In: Proceedings of the European Conference on Computer Vision (ECCV), pp 702–718. Springer
Smith MR, Mitchell L, Giraud-Carrier C, Martinez T (2014) Recommending learning algorithms and their associated hyperparameters. ArXiv preprint, arXiv:1407.1890
Smith MR, White A, Giraud-Carrier C, Martinez T (2014) An easy to use repository for comparing and improving machine learning algorithm usage. ArXiv preprint, arXiv:1405.7292
Smith-Miles K (2009) Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Computing Surveys 41(1), 6:1–6:25
Snoek J, Larochelle H, Adams R (2012) Practical Bayesian optimization of machine learning algorithms. In: Proceedings of NIPS’12
Srinivas N, Krause A, Kakade S, Seeger M (2010) Gaussian process optimization in the bandit setting: No regret and experimental design. In: Proceedings of ICML’10
Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. JMLR 15(1):1929–1958
Swersky K, Duvenaud D, Snoek J, Hutter F, Osborne M (2013) Raiders of the lost architecture: Kernels for Bayesian optimization in conditional parameter spaces. In: NIPS workshop on Bayesian Optimization in theory and practice (BayesOpt’13)
Swersky K, Snoek J, Adams R (2013) Multi-task bayesian optimization. In: Proc. of ICML’13
Swersky K, Snoek J, Prescott Adams R (2014) Freeze-Thaw Bayesian Optimization. ArXiv, arXiv:1406.3896
Thornton C, Hutter F, Hoos HH, Leyton-Brown K (2013) Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms. In: Proceedings of KDD’13
Vanschoren J, Blockeel H, Pfahringer B, Holmes G (2012) Experiment databases: a new way to share, organize and learn from experiments. Machine Learning 87(2):127–158
Vilalta R, Drissi Y (2002) A perspective view and survey of meta-learning. Artif Intell Rev 18(2):77–95
Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P (2010) Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. JMLR 11:3371–3408
Wager S, Wang S, Liang PS (2013) Dropout training as adaptive regularization. In: Proceedings of NIPS’13, pp 351–359
Weng P, Busa-Fekete R, Hüllermeier E (2013) Interactive Q-learning with ordinal rewards and unreliable tutor. In: Proceedings ECML/PKDD Workshop on Reinforcement learning from Generalized Feedback: Beyond Numerical Rewards
Yogatama D, Mann G (2014) Efficient transfer learning method for automatic hyperparameter tuning. In: Proceedings of AISTATS’14, pp 1077–1085
Author information
Authors and Affiliations
Corresponding author
Additional information
The authors gratefully acknowledge funding through the German Research Foundation’s Priority Programme “Autonomous Learning” (DFG SPP 1527).
Rights and permissions
About this article
Cite this article
Hutter, F., Lücke, J. & Schmidt-Thieme, L. Beyond Manual Tuning of Hyperparameters. Künstl Intell 29, 329–337 (2015). https://doi.org/10.1007/s13218-015-0381-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13218-015-0381-0