[go: up one dir, main page]

Skip to main content
Log in

Bat algorithm with triangle-flipping strategy for numerical optimization

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Bat algorithm (BA) is a novel population-based evolutionary algorithm inspired by echolocation behavior. Due to its simple concept, BA has been widely applied to various engineering applications. As an optimization approach, the global search characteristics determine the optimization performance and convergence speed. In BA, the global search capability is dominated by the velocity updating. How to update the velocity of bats may seriously affect the performance of BA. In this paper, we propose a triangle-flipping strategy to update the velocity of bats. Three different triangle-flipping strategies with five different designs are introduced. The optimization performance is verified by CEC2013 benchmarks in those designs against the standard BA. Simulation results show that the hybrid triangle-flipping strategy is superior to other algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Yang XS, Cui ZH, Xiao RB, Gandomi AH, Karamanoglu M (2013) Swarm intelligence and bio-inspired computation: theory and applications. Elsevier, London

    Book  Google Scholar 

  2. Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micromachine and human science, Nagoya, Japan, pp 39–43

  3. Wang H, Sun H, Li CH, Rahnamayan S, Pan JS (2013) Diversity enhanced particle swarm optimization with neighborhood search. Inf Sci 223:119–135

    Article  MathSciNet  Google Scholar 

  4. Jia Z, Duan H, Shi Y (2016) Hybrid brain storm optimisation and simulated annealing algorithm for continuous optimisation problems. Int J Bio Inspir Comput 8(2):109–121

    Article  Google Scholar 

  5. Dorigo M (1992) Optimization, learning and natural algorithms, PhD thesis, Politecnico di Milano, Italy

  6. Stodola P, Mazal J (2016) Applying the ant colony optimisation algorithm to the capacitated multi-depot vehicle routing problem. Int J Bio Inspir Comput 8(4):228–233

    Article  Google Scholar 

  7. Zhang YW, Wu JT, Guo X, Li GN (2016) Optimising web service composition based on differential fruit fly optimisation algorithm. Int J Comput Sci Math 7(1):87–101

    Article  MathSciNet  Google Scholar 

  8. Wang GG, Deb S, Gao XZ, Coelho LdS (2016) A new metaheuristic optimization algorithm motivated by elephant herding behavior. Int J Bio Inspir Comput 8(6):394–409

    Article  Google Scholar 

  9. Yang GJ, Zhang XL (2016) Application of extended artificial physics optimisation in product colour harmony design. Int J Comput Sci Math 7(4):350–360

    Article  Google Scholar 

  10. Guo ZL, Wang SW, Yue XZ (2016) Enhanced social emotional optimisation algorithm with elite multi-parent crossover. Int J Comput Sci Math 7(6):568–574

    Article  MathSciNet  Google Scholar 

  11. Yang XS, Deb S (2010) Cuckoo search via Levy flights. In: Proceedings of world congress on nature and biologically inspired computing, India, pp 210–214

  12. Cui ZH, Sun B, Wang GG, Xue Y, Chen JJ (2017) A novel oriented cuckoo search algorithm to improve DV-Hop performance for cyber-physical systems. J Parallel Distrib Comput 103:42–52

    Article  Google Scholar 

  13. Wang GG, Gandomi AH, Yang XS, Alavi AH (2016) A new hybrid method based on krill herd and cuckoo search for global optimization tasks. Int J Bio Inspir Comput 8(5):286–299

    Article  Google Scholar 

  14. Zhang MQ, Wang H, Cui ZH, Chen JJ (2017) Hybrid multi-objective cuckoo search with dynamical local search. Memet Comput. https://doi.org/10.1007/s12293-017-0237-2

    Google Scholar 

  15. Wang H, Wang W, Sun H, Rahnamayan S (2016) Firefly algorithm with random attraction. Int J Bio Inspir Comput 8(1):33–41

    Article  Google Scholar 

  16. Wang H, Wang WJ, Zhou XY, Sun H, Zhao J, Yu X, Cui ZH (2017) Firefly algorithm with neighborhood attraction. Inf Sci 282/283:374–387

    Article  Google Scholar 

  17. Gálvez A, Iglesias A (2016) New memetic self-adaptive firefly algorithm for continuous optimisation. Int J Bio Inspir Comput 8(5):300–317

    Article  Google Scholar 

  18. Yu G (2016) An improved firefly algorithm based on probabilistic attraction. Int J Comput Sci Math 7(6):530–536

    Article  MathSciNet  Google Scholar 

  19. Wang H, Wu ZJ, Rahnamayan S, Sun H, Liu Y, Pan JS (2014) Multi-strategy ensemble artificial bee colony algorithm. Inf Sci 279:587–603

    Article  MathSciNet  MATH  Google Scholar 

  20. Lu Y, Li RX, Li SM (2016) Artificial bee colony with bidirectional search. Int J Comput Sci Math 7(6):586–593

    Article  MathSciNet  Google Scholar 

  21. Yu G (2016) A new multi-population-based artificial bee colony for numerical optimization. Int J Comput Sci Math 7(6):509–515

    Article  MathSciNet  Google Scholar 

  22. Yang XS (2010) A new metaheuristic bat-inspired algorithm. In: International workshop on nature inspired cooperative strategies for optimization. Granada, Spain, pp 65–74

  23. Li LL, Zhou YQ (2014) A novel complex-valued bat algorithm. Neural Comput Appl 25(6):1369–1381

    Article  Google Scholar 

  24. Saha SK, Kar R, Mandal D, Ghoshal SP, Mukherjee V (2013) A new design method using opposition-based BAT algorithm for IIR system identification problem. Int J Bio Inspir Comput 5(2):99–132

    Article  Google Scholar 

  25. Gandomi AH, Yang XS (2014) Chaotic bat algorithm. J Comput Sci 5:224–232

    Article  MathSciNet  Google Scholar 

  26. Jordehi AR (2015) Chaotic bat swarm optimization (CBSO). Appl Soft Comput 26:523–530

    Article  Google Scholar 

  27. Xu ZX, Unveren A, Acan A (2016) Probability collectives hybridised with differential evolution for global optimisation. Int J Bio Inspir Comput 8(3):133–153

    Article  Google Scholar 

  28. Li C, Zhou C, Li X, Dai G (2017) An improved differential evolution algorithm based on suboptimal solution mutation. Int J Comput Sci Math 8(1):28–34

    Article  MathSciNet  Google Scholar 

  29. Fister I, Fong S, Brest J, Fister I (2014) A novel hybrid self-adaptive bat algorithm. Sci World J. https://doi.org/10.1155/2014/709738 (Article ID 709738)

    Google Scholar 

  30. Cai XJ, Gao X, Xue Y (2016) Improved bat algorithm with optimal forage strategy and random disturbance strategy. Int J Bio Inspir Comput 8(4):205–214

    Article  Google Scholar 

  31. Xie J, Zhou YQ, Chen H (2013) A bat algorithm based on Levy flights trajectory. Pattern Recognit Artif Intell 26(9):829–837 (in Chinese)

    Google Scholar 

  32. Khan K, Nikov A, Sahai A (2011) Fuzzy bat clustering method for ergonomic screening of office workplaces. In: Third international conference on software, services and semantic technologies S3T, Bourgas, Bulgaria, pp 59–66

  33. Bahmani-Firouzi B, Azizipanah-Abarghooee R (2014) Optimal sizing of battery energy storage for micro-grid operation management using a new improved bat algorithm. Electr Power Energy Syst 5(56):42–54

    Article  Google Scholar 

  34. Xue Y, Jiang JM, Zhao BP, Ma TH (2017) A self-adaptive artificial bee colony algorithm based on global best for global optimization. Soft Comput. https://doi.org/10.1007/s00500-017-2547-1

    Google Scholar 

  35. Jaddi NS, Abdullah S, andHamdan AR (2015) Multi-population cooperative bat algorithm-based optimization of artificial neural network model. Inf Sci 294:628–644

    Article  MathSciNet  Google Scholar 

  36. Pongchairerks P, Kachitvichyanukul V (2016) A two-level particle swarm optimisation algorithm for open-shop scheduling problem. Int J Comput Sci Math 7(6):575–585

    Article  MathSciNet  MATH  Google Scholar 

  37. Adewumi AO, Arasomwan MA (2016) On the performance of particle swarm optimisation with(out) some control parameters for global optimisation. Int J Bio Inspir Comput 8(1):14–32

    Article  Google Scholar 

  38. Yılmaz S, Kucuksille EU (2013) Improved bat algorithm (IBA) on continuous optimization problems. Lect Notes Softw Eng 1(3):279–283

    Article  Google Scholar 

  39. Cui ZH, Li FX, Kang Q (2015) Bat algorithm with inertia weight. In: Proceedings of Chinese automation congress, Wuhan, China, pp 92–796

  40. Cai XJ, Li WZ, Kang Q, Wang L, Wu QD (2015) Bat algorithm with oscillation element. Int J Innov Comput Appl 6(3/4):171–180

    Article  Google Scholar 

  41. Yilmaz S, Kucuksille EU (2015) A new modification approach on bat algorithm for solving optimization problems. Appl Soft Comput 28:259–275

    Article  Google Scholar 

  42. Liu CP, Ye CM (2013) Bat algorithm with the characteristics of Levy flights. CAAI Trans Intell Syst 8(3):240–246 (in Chinese)

    MathSciNet  Google Scholar 

  43. Xie J, Zhou YQ, Chen H (2013) A novel bat algorithm based on differential operator and Lévy flights trajectory. Comput Intell Neurosci. https://doi.org/10.1155/2013/453812 (Article ID 453812)

    Google Scholar 

  44. Zhu BL, Zhu WY, Liu ZJ, Duan QY, Cao L (2016)A novel quantum-behaved bat algorithm with mean best position directed for numerical optimization. Comput Intell Neurosci. https://doi.org/10.1155/2016/6097484 (Article ID 6097484)

    Google Scholar 

  45. Cai Q, Ma LJ, Gong MG, Tian DY (2016) A survey on network community detection based on evolutionary computation. Int J Bio Inspir Comput 8(2):84–98

    Article  Google Scholar 

  46. Ma TH, Wang Y, Tang ML, Cao J, Tian Y, Al-Dhelaan A, Al-Rodhaan M (2016) LED: a fast overlapping communities detection algorithm based on structural clustering. Neurocomputing 207:488–500

    Article  Google Scholar 

  47. Hassan EA, Ibrahem HA, Hassaniem AE, Fahmy AA (2015) A discrete bat algorithm for the community detection problem. In: Proceedings of the 10th international conference on hybrid artificial intelligence systems, Bilbao, Spain, pp 188–199

  48. Senthilnath J, Kulkarni S, Benediktsson JA, Yang XS (2016) A novel approach for multispectral satellite image classification based on the bat algorithm. IEEE Geosci Remote Sens Lett 13(4):599–603

    Article  Google Scholar 

  49. Gao ML, Shen J, Yin LJ, Liu W, Zou GF, Li HT, Fu GX (2016) A novel visual tracking method using bat algorithm. Neurocomputing 177:612–619

    Article  Google Scholar 

  50. Kavousi-Fard A, Niknam T, Fotuhi-Firuzabad M (2016) A novel stochastic framework based on cloud theory and theta-modified bat algorithm to solve the distribution feeder reconfiguration. IEEE Trans Smart Grid 7(2):740–750

    Google Scholar 

  51. Talafuse TP, Pohl EA (2016) A bat algorithm for the redundancy allocation problem. Eng Optim 48(5):900–910

    Article  MathSciNet  Google Scholar 

  52. Li FX, Cui ZH, Sun B (2016) DV-hop localisation algorithm with DDICS. Int J Comput Sci Math 7(3):254–262

    Article  MathSciNet  Google Scholar 

  53. Lin YH, Wang LJ, Zhong YW, Zhang CP (2016) Control scaling factor of cuckoo search algorithm using learning automata. Int J Comput Sci Math 7(5):476–484

    Article  MathSciNet  Google Scholar 

  54. Liang JJ, Qu BY, Suganthan PN, Hernndez-Daz AG (2013) Problem definitions and evaluation criteria for the CEC 2013 special session and competition on real-parameter optimization. Technical Report 201212, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore

  55. Sun H, Wang K, Zhao Jand Yu X (2016) Artificial bee colony algorithm with improved special centre. Int J Comput Sci Math 7(6):548–553

    Article  MathSciNet  Google Scholar 

  56. Lv L, Wu LY, Zhao J, Wang H, Wu RX, Fan TH, Hu M, Xie ZF (2016) Improved multi-strategy artificial bee colony algorithm. Int J Comput Sci Math 7(5):467–475

    Article  MathSciNet  Google Scholar 

  57. Wang H, Cui ZH, Sun H, Rahnamayan S, Yang XS (2017) Randomly attracted firefly algorithm with neighborhood search and dynamic parameter adjustment mechanism. Soft Comput 21(18):5325–5339

    Article  Google Scholar 

  58. Wang BW, Gu XD, Ma L, Yan SS (2017) Temperature error correction based on BP neural network in meteorological WSN. Int J Sens Netw 23(4):265–278

    Article  Google Scholar 

  59. Zhang J, Tang J, Wang TB, Chen F (2017) Energy-efficient data-gathering rendezvous algorithms with mobile sinks for wireless sensor networks. Int J Sens Netw 23(4):248–257

    Article  Google Scholar 

  60. Zhang YH, Sun XM, Wang BW (2016) Efficient algorithm for K-barrier coverage based on integer linear programming. China Commun 13(7):16–23

    Article  Google Scholar 

  61. Shen J, Zhou TQ, He DB, Zhang YX, Sun XM, Xiang Y (2017) Block design-based key agreement for group data sharing in cloud computing. IEEE Trans Dependable Secure Comput. https://doi.org/10.1109/TDSC.2017.2725953

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under no. 61663028, Natural Science Foundation of Shanxi Province under Grant no. 201601D011045, and International Science & Technology Cooperation Program of China under Grant no. 2014DFR70280.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihua Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, X., Wang, H., Cui, Z. et al. Bat algorithm with triangle-flipping strategy for numerical optimization. Int. J. Mach. Learn. & Cyber. 9, 199–215 (2018). https://doi.org/10.1007/s13042-017-0739-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-017-0739-8

Keywords

Navigation