[go: up one dir, main page]

Skip to main content
Log in

Nano-engineered Solutions for Sustainable Environmental Cleanup

  • Review
  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Nanotechnology, with its distinctive characteristics and versatile applications, demonstrates considerable potential in detecting, removing, and degrading pollutants such as heavy metals, organic compounds, and microplastics. The utilization of nanotechnology for environmental remediation presents a promising and innovative approach to tackle the growing environmental challenges. This review article offers a thorough examination of recent advancements in nanotechnology and its application in addressing various types of environmental pollutants and highlights the potential of nanomaterials, such as metal-based nanoparticles, carbon nanotubes, and nanofibrous membranes, in various remediation processes. The article investigates the underlying mechanisms of nanomaterials in pollutant adsorption and degradation, highlighting the significance of their high surface-to-volume ratio, enhanced reactivity, and customizable surface properties. Nanoadsorbents demonstrate high adsorption capacities and selectivity for the removal of pollutants from water and soil. Nanofiltration membranes offer precise separation capabilities for the removal of contaminants from water sources. Photocatalysis using nanomaterials shows promise for air pollution remediation. Additionally, the development of nanosensors enables real-time monitoring and detection of pollutants. Overall, nanotechnology offers innovative and efficient solutions for addressing environmental pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Abbas, S., Nasreen, S., Haroon, A., & Ashraf, M. A. (2020). Synthesis of silver and copper nanoparticles from plants and application as adsorbents for naphthalene decontamination. Saudi Journal of Biological Sciences, 27(4), 1016–1023.

    Article  Google Scholar 

  2. Abdel Salam, M. (2013). Removal of heavy metal ions from aqueous solutions with multi-walled carbon nanotubes: Kinetic and thermodynamic studies. International Journal of Environmental Science and Technology, 10, 677–688.

    Article  Google Scholar 

  3. Addo Ntim, S., & Mitra, S. (2011). Removal of trace arsenic to meet drinking water standards using iron oxide coated multiwall carbon nanotubes. Journal of Chemical & Engineering Data, 56(5), 2077–2083.

    Article  Google Scholar 

  4. Agarwal, P. B., Alam, B., Sharma, D. S., Sharma, S., Mandal, S., & Agarwal, A. (2018). Flexible NO2 gas sensor based on single-walled carbon nanotubes on polytetrafluoroethylene substrates. Flexible and Printed Electronics, 3(3), 035001.

    Article  Google Scholar 

  5. Aghdam, K., Panahi, H. A., Alaei, E., Hasani, A. H., & Moniri, E. (2016). Preparation of functionalized graphene oxide and its application as a nanoadsorbent for Hg 2+ removal from aqueous solution. Environmental Monitoring and Assessment, 188, 1–13.

    Article  Google Scholar 

  6. Aiswariya, K. S., & Jose, V. (2022). Bioactive molecules coated silver oxide nanoparticle synthesis from Curcuma zanthorrhiza and HR-LCMS monitored validation of its photocatalytic potency towards malachite green degradation. Journal of Cluster Science, 33, 1685–1696.

  7. Akbari, A., Sabouri, Z., Hosseini, H. A., Hashemzadeh, A., Khatami, M., & Darroudi, M. (2020). Effect of nickel oxide nanoparticles as a photocatalyst in dyes degradation and evaluation of effective parameters in their removal from aqueous environments. Inorganic Chemistry Communications, 115, 107867.

    Article  Google Scholar 

  8. Akinbile, C. O., Ajibade, F. O., & Ofuafo, O. (2016). Soil quality analysis for dumpsite environment in a university community in Nigeria. FUTA Journal of Engineering and Engineering Technology, 10(2), 68–73.

    Google Scholar 

  9. Akpomie, K. G., Ghosh, S., Gryzenhout, M., & Conradie, J. (2021). One-pot synthesis of zinc oxide nanoparticles via chemical precipitation for bromophenol blue adsorption and the antifungal activity against filamentous fungi. Science and Reports, 11, 8305.

    Article  Google Scholar 

  10. Al-Taai, S. H. H. (2021, June). Soil pollution-causes and effects. In IOP conference series: Earth and environmental science (Vol. 790, No. 1, p. 012009). IOP Publishing.

    Google Scholar 

  11. Al-Gamal, A. Q., Falath, W. S., & Saleh, T. A. (2021). Enhanced efficiency of polyamide membranes by incorporating TiO2-graphene oxide for water purification. Journal of Molecular Liquids, 323, 114922.

    Article  Google Scholar 

  12. Al-Hamoud, K., Shaik, M. R., Khan, M., Alkhathlan, H. Z., Adil, S. F., Kuniyil, M., ..., & Khan, M. (2022). Pulicaria undulata extract-mediated eco-friendly preparation of TiO2 nanoparticles for photocatalytic degradation of methylene blue and methyl orange. ACS Omega, 7(6), 4812–4820.

  13. Ali, M. M., & Sandhya, K. Y. (2014). Reduced graphene oxide as a highly efficient adsorbent for 1-naphthol and the mechanism thereof. RSC Advances, 4(93), 51624–51631.

    Article  Google Scholar 

  14. Ali, S., Rehman, S. A. U., Shah, I. A., Farid, M. U., An, A. K., & Huang, H. (2019). Efficient removal of zinc from water and wastewater effluents by hydroxylated and carboxylated carbon nanotube membranes: Behaviors and mechanisms of dynamic filtration. Journal of Hazardous Materials, 365, 64–73.

    Article  Google Scholar 

  15. Alina, B. (2018). Pollution facts and types of pollution. Live Science Contributor, 136–139.

  16. Al-Najar, B., Peters, C. D., Albuflasa, H., & Hankins, N. P. (2020). Pressure and osmotically driven membrane processes: A review of the benefits and production of nano-enhanced membranes for desalination. Desalination, 479, 114323.

    Article  Google Scholar 

  17. Al-Qahtani, K. M. (2017). Cadmium removal from aqueous solution by green synthesis zero valent silver nanoparticles with Benjamina leaves extract. The Egyptian Journal of Aquatic Research, 43(4), 269–274.

    Article  Google Scholar 

  18. Al-Senani, G. M., & Al-Kadhi, N. (2020). The synthesis and effect of silver nanoparticles on the adsorption of Cu2+ from aqueous solutions. Applied Sciences, 10(14), 4840.

    Article  Google Scholar 

  19. Amaku, J. F., Olisah, C., Adeola, A. O., Iwuozor, K. O., Akpomie, K. G., Conradie, J., et al. (2022). Multiwalled carbon nanotubes versus metal-organic frameworks: a review of their hexavalent chromium adsorption performance. International Journal of Environmental Analytical Chemistry, 1–23.

  20. Amin, M. T., Alazba, A. A., & Manzoor, U. (2014). A review of removal of pollutants from water/wastewater using different types of nanomaterials. Advances in Materials Science and Engineering, 2014, 1–24.

    Article  Google Scholar 

  21. Amin, S., Solangi, A. R., Hassan, D., Hussain, N., Ahmed, J., & Baksh, H. (2021). Recent trends in development of nanomaterials based green analytical methods for environmental remediation. Current Analytical Chemistry, 17(4), 438–448.

    Article  Google Scholar 

  22. Anf, H. Z., & Emad, S. (2014). An environmental impact assessment of the open burning of scrap tyres. Journal of Applied Sciences, 14(21), 2695–2703.

    Article  Google Scholar 

  23. Ansari, S. A., Khan, M. M., Ansari, M. O., & Cho, M. H. (2016). Nitrogen-doped titanium dioxide (N-doped TiO 2) for visible light photocatalysis. New Journal of Chemistry, 40(4), 3000–3009.

    Article  Google Scholar 

  24. Anwar, A., Minhaz, A., Khan, N. A., Kalantari, K., Afifi, A. B. M., & Shah, M. R. (2018). Synthesis of gold nanoparticles stabilized by a pyrazinium thioacetate ligand: A new colorimetric nanosensor for detection of heavy metal Pd (II). Sensors and Actuators B: Chemical, 257, 875–881.

    Article  Google Scholar 

  25. Aremu, M. O., Arinkoola, A. O., Olowonyo, I. A., & Salam, K. K. (2020). Improved phenol sequestration from aqueous solution using silver nanoparticle modified Palm Kernel Shell Activated Carbon. Heliyon, 6(7), e04492.

    Article  Google Scholar 

  26. Aslam, M., Abdullah, A. Z., Rafatullah, M., & Fawad, A. (2022). Abelmoschus esculentus (Okra) seed extract for stabilization of the biosynthesized TiO2 photocatalyst used for degradation of stable organic substance in water. Environmental Science and Pollution Research, 29(27), 41053–41064.

    Article  Google Scholar 

  27. Attatsi, I. K., & Nsiah, F. (2020). Application of silver nanoparticles toward Co (II) and Pb (II) ions contaminant removal in groundwater. Applied Water Science, 10(6), 1–13.

    Article  Google Scholar 

  28. Awwad, A., Amer, M., & Al-aqarbeh, M. (2020). TiO2-kaolinite nanocomposite prepared from the Jordanian Kaolin clay: Adsorption and thermodynamics of Pb (II) and Cd (II) ions in aqueous solution. Chemistry International, 6(4), 168–178.

    Google Scholar 

  29. Azeez, L., Lateef, A., Adebisi, S. A., & Oyedeji, A. O. (2018). Novel biosynthesized silver nanoparticles from cobweb as adsorbent for rhodamine B: Equilibrium isotherm, kinetic and thermodynamic studies. Applied Water Science, 8(1), 1–12.

    Article  Google Scholar 

  30. Ba-Abbad, M. M., Kadhum, A. A. H., Mohamad, A. B., Takriff, M. S., & Sopian, K. (2013). Visible light photocatalytic activity of Fe3+-doped ZnO nanoparticle prepared via sol–gel technique. Chemosphere, 91(11), 1604–1611.

    Article  Google Scholar 

  31. Bacchin, P., Marty, A., Duru, P., Meireles, M., & Aimar, P. (2011). Colloidal surface interactions and membrane fouling: Investigations at pore scale. Advances in Colloid and Interface Science, 164(1–2), 2–11.

    Article  Google Scholar 

  32. Bagheri, S., TermehYousefi, A., & Do, T. O. (2017). Photocatalytic pathway toward degradation of environmental pharmaceutical pollutants: Structure, kinetics and mechanism approach. Catalysis Science & Technology, 7(20), 4548–4569.

    Article  Google Scholar 

  33. Baghriche, O., Rtimi, S., Pulgarin, C., & Kiwi, J. (2017). Polystyrene CuO/Cu2O uniform films inducing MB-degradation under sunlight. Catalysis Today, 284, 77–83.

    Article  Google Scholar 

  34. Balcha, A., Yadav, O. P., & Dey, T. (2016). Photocatalytic degradation of methylene blue dye by zinc oxide nanoparticles obtained from precipitation and sol-gel methods. Environmental Science and Pollution Research, 23, 25485–25493.

    Article  Google Scholar 

  35. Banerjee, P., Sau, S., Das, P., & Mukhopadhyay, A. (2014). Green synthesis of silver-nanocomposite for treatment of textile dye. Nanoscience & Technology, 1(2), 1–6.

    Google Scholar 

  36. Baoum, A. A., & Amin, M. S. (2023). Excellent photocatalytic degradation of tetracycline under visible illumination utilizing Ag2S/Ag2O heterojunction. Optical Materials, 137, 113594.

    Article  Google Scholar 

  37. Baptista, P. V., Koziol-Montewka, M., Paluch-Oles, J., Doria, G., & Franco, R. (2006). Gold-nanoparticle-probe–based assay for rapid and direct detection of Mycobacterium tuberculosis DNA in clinical samples. Clinical Chemistry, 52(7), 1433–1434.

    Article  Google Scholar 

  38. Baragaño, D., Alonso, J., Gallego, J. R., Lobo, M. C., & Gil-Díaz, M. (2020). Magnetite nanoparticles for the remediation of soils co-contaminated with As and PAHs. Chemical Engineering Journal, 399, 125809.

    Article  Google Scholar 

  39. Basheer, A. A. (2018). New generation nano-adsorbents for the removal of emerging contaminants in water. Journal of Molecular Liquids, 261, 583–593.

    Article  Google Scholar 

  40. Benelmekki, M. (2015). An introduction to nanoparticles and nanotechnology. Morgan & Claypool Publishers.

    Book  Google Scholar 

  41. Bian, Y., Chen, C., & Zhang, L. (2017). Development of nanofiber filters with high PM 2.5 removal efficiency and low air resistance. In 2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO), 868–872. IEEE.

  42. BinSabt, M., Sagar, V., Singh, J., Rawat, M., & Shaban, M. (2022). Green synthesis of CS-TiO2 NPs for efficient photocatalytic degradation of methylene blue dye. Polymers, 14(13), 2677.

    Article  Google Scholar 

  43. Cai, Y., Chen, D., Li, N., Xu, Q., Li, H., He, J., & Lu, J. (2019). Self-healing and superwettable nanofibrous membranes for efficient separation of oil-in-water emulsions. Journal of Materials Chemistry A, 7(4), 1629–1637.

    Article  Google Scholar 

  44. Cai, Y., Shi, S. Q., Fang, Z., & Li, J. (2021). Design, development, and outlook of superwettability membranes in oil/water emulsions separation. Advanced Materials Interfaces, 8(18), 2100799.

    Article  Google Scholar 

  45. Calisir, M. D., Gungor, M., Demir, A., Kilic, A., & Khan, M. M. (2020). Nitrogen-doped TiO2 fibers for visible-light-induced photocatalytic activities. Ceramics International, 46(10), 16743–16753.

    Article  Google Scholar 

  46. Cao, J., Sun, T., & Grattan, K. T. (2014). Gold nanorod-based localized surface plasmon resonance biosensors: A review. Sensors and Actuators B: Chemical, 195, 332–351.

    Article  Google Scholar 

  47. Catherine, H. N., Ou, M. H., Manu, B., & Shih, Y. H. (2018). Adsorption mechanism of emerging and conventional phenolic compounds on graphene oxide nanoflakes in water. Science of the Total Environment, 635, 629–638.

    Article  Google Scholar 

  48. Chadha, U., Selvaraj, S. K., Thanu, S. V., Cholapadath, V., Abraham, A. M., Manoharan, M., & Paramsivam, V. (2022). A review of the function of using carbon nanomaterials in membrane filtration for contaminant removal from wastewater. Materials Research Express, 9(1), 012003.

    Google Scholar 

  49. Chakraborty, A., Ruzimuradov, O., Gupta, R. K., Cho, J., & Prakash, J. (2022). TiO2 nanoflower photocatalysts: Synthesis, modifications and applications in wastewater treatment for removal of emerging organic pollutants. Environmental Research, 212, 113550.

    Article  Google Scholar 

  50. Chantes, P., Jarusutthirak, C., & Danwittayakul, S. (2015). A comparison study of photocatalytic activity of TiO2 and ZnO on the degradation of real batik wastewater. In International Conference on Biological, Environment and Food Engineering (BEFE-2015), 16, 8–12.

  51. Chauhan, D., Chen, R., Xu, C., Mast, D., Kleismit, R., Shanov, V., ..., & Schulz, M. J. (2019). Carbon nanotube hybrid fabric and tape. In Nanotube Superfiber Materials, (2), 239–261. William Andrew Publishing.

  52. Chen, C. W., Liao, Y. L., Chen, C. F., & Dong, C. D. (2013). Phenol degradation by photocatalysis on synthesized nano-TiO2: Evolution of intermediates, organic acids, end-products, and toxicity. Journal of Bionanoscience, 7(2), 202–209.

    Article  Google Scholar 

  53. Chen, H., Cheng, Z., Zhou, X., Wang, R., & Yu, F. (2021). Emergence of surface-enhanced Raman scattering probes in near-infrared windows for biosensing and bioimaging. Analytical Chemistry, 94(1), 143–164.

    Article  Google Scholar 

  54. Chen, L., Qi, N., Wang, X., Chen, L., You, H., & Li, J. (2014). Ultrasensitive surface-enhanced Raman scattering nanosensor for mercury ion detection based on functionalized silver nanoparticles. RSC Advances, 4(29), 15055–15060.

    Article  Google Scholar 

  55. Chen, X., & Chen, B. (2015). Macroscopic and spectroscopic investigations of the adsorption of nitroaromatic compounds on graphene oxide, reduced graphene oxide, and graphene nanosheets. Environmental Science & Technology, 49(10), 6181–6189.

    Article  Google Scholar 

  56. Chen, X., Qiu, M., Ding, H., Fu, K., & Fan, Y. (2016). A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification. Nanoscale, 8(10), 5696–5705.

    Article  Google Scholar 

  57. Chen, X., Wu, Z., Liu, D., & Gao, Z. (2017). Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Research Letters, 12, 1–10.

    Article  Google Scholar 

  58. Chen, X., You, M., Wei, J., Ke, Y., Liu, W., & Sun, W. (2019). Carbon nanotubes affect the formation of trihalomethanes during chlorination of bisphenol A. Chemical Engineering Journal, 370, 337–345.

    Article  Google Scholar 

  59. Chinthalapudi, N., Kommaraju, V. V. D., Kannan, M. K., Nalluri, C. B., & Varanasi, S. (2021). Composites of cellulose nanofibers and silver nanoparticles for malachite green dye removal from water. Carbohydrate Polymer Technologies and Applications, 2, 100098.

    Article  Google Scholar 

  60. Cho, M., Lee, Y., Chung, H., & Yoon, J. (2004). Inactivation of Escherichia coli by photochemical reaction of ferrioxalate at slightly acidic and near-neutral pHs. Applied and Environmental Microbiology, 70(2), 1129–1134.

    Article  Google Scholar 

  61. Copat, C., Cristaldi, A., Fiore, M., Grasso, A., Zuccarello, P., Santo Signorelli, S., ..., & Ferrante, M. (2020). The role of air pollution (PM and NO2) in COVID-19 spread and lethality: A systematic review. Environmental Research, 191, 110129.

  62. Cortés-Arriagada, D., Villegas-Escobar, N., & Ortega, D. E. (2018). Fe-doped graphene nanosheet as an adsorption platform of harmful gas molecules (CO, CO2, SO2 and H2S), and the co-adsorption in O2 environments. Applied Surface Science, 427, 227–236.

    Article  Google Scholar 

  63. Crini, G. (2005). Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Progress in Polymer Science, 30(1), 38–70.

    Article  Google Scholar 

  64. Cui, Y., Briscoe, J., & Dunn, S. (2013). Effect of ferroelectricity on solar-light-driven photocatalytic activity of BaTiO3 influence on the carrier separation and stern layer formation. Chemistry of Materials, 25(21), 4215–4223.

    Article  Google Scholar 

  65. Daryabeigi Zand, A., Vaezi Heir, A., & Khodaei, H. (2022). Integrated remediation approach for metal polluted soils using plants, nanomaterials and root-associated bacteria. Journal of Dispersion Science and Technology, 43(11), 1674–1688.

    Article  Google Scholar 

  66. Das, R., Abd Hamid, S. B., Ali, M. E., Ismail, A. F., Annuar, M. S. M., & Ramakrishna, S. (2014). Multifunctional carbon nanotubes in water treatment: The present, past and future. Desalination, 354, 160–179.

    Article  Google Scholar 

  67. Das, S., Sen, B., & Debnath, N. (2015). Recent trends in nanomaterials applications in environmental monitoring and remediation. Environmental Science and Pollution Research, 22(23), 18333–18344.

    Article  Google Scholar 

  68. De Benedetto, C., Macario, A., Siciliano, C., Nagy, J. B., & De Luca, P. (2020). Adsorption of reactive blue 116 dye and reactive yellow 81 dye from aqueous solutions by multi-walled carbon nanotubes. Materials, 13(12), 2757.

    Article  Google Scholar 

  69. De Volder, M. F., Tawfick, S. H., Baughman, R. H., & Hart, A. J. (2013). Carbon nanotubes: Present and future commercial applications. Science, 339(6119), 535–539.

    Article  Google Scholar 

  70. Deng, S., Ren, B., Hou, B., Deng, X., Deng, R., Zhu, G., & Cheng, S. (2024). Adsorption of Sb (III) and Pb (II) in wastewater by magnetic γ-Fe2O3-loaded sludge biochar: Performance and mechanisms. Chemosphere, 349, 140914.

    Article  Google Scholar 

  71. Desai, M. L., Basu, H., Saha, S., Singhal, R. K., & Kailasa, S. K. (2021). Fluorescence enhancement of bovine serum albumin gold nanoclusters from La3+ ion: Detection of four divalent metal ions (Hg2+, Cu2+, Pb2+ and Cd2+). Journal of Molecular Liquids, 336, 116239.

    Article  Google Scholar 

  72. Díaz-Flores, P. E., Arcibar-Orozco, J. A., Perez-Aguilar, N. V., Rangel-Mendez, J. R., Ovando Medina, V. M., & Alcalá-Jáuegui, J. A. (2017). Adsorption of organic compounds onto multiwall and nitrogen-doped carbon nanotubes: Insights into the adsorption mechanisms. Water, Air, & Soil Pollution, 228, 1–13.

    Article  Google Scholar 

  73. Ebrahimpour, E., & Kazemi, A. (2023). Mercury (II) and lead (II) ions removal using a novel thiol-rich hydrogel adsorbent; PHPAm/Fe3O4@ SiO2-SH polymer nanocomposite. Environmental Science and Pollution Research, 30(5), 13605–13623.

    Article  Google Scholar 

  74. Edison, T. N. J. I., Atchudan, R., Kamal, C., & Lee, Y. R. (2016). Caulerpa racemosa: A marine green alga for eco-friendly synthesis of silver nanoparticles and its catalytic degradation of methylene blue. Bioprocess and Biosystems Engineering, 39, 1401–1408.

    Article  Google Scholar 

  75. Egbosiuba, T. C., Abdulkareem, A. S., Kovo, A. S., Afolabi, E. A., Tijani, J. O., Bankole, M. T., et al. (2021). Adsorption of Cr (VI), Ni (II), Fe (II) and Cd (II) ions by KIAgNPs decorated MWCNTs in a batch and fixed bed process. Scientific reports, 11(1), 75.

    Article  Google Scholar 

  76. Egbosiuba, T. C., Egwunyenga, M. C., Tijani, J. O., Mustapha, S., Abdulkareem, A. S., Kovo, A. S., et al. (2022). Activated multi-walled carbon nanotubes decorated with zero valent nickel nanoparticles for arsenic, cadmium and lead adsorption from wastewater in a batch and continuous flow modes. Journal of Hazardous Materials, 423, 126993.

    Article  Google Scholar 

  77. Fang, S. Y., Gong, J. L., Tang, L., Cao, W. C., Li, J., Tan, Z. K., ..., & Chen, Z. P. (2022). Construction the hierarchical architecture of molybdenum disulfide/MOF composite membrane via electrostatic self-assembly strategy for efficient molecular separation. Chemical Engineering Journal, 449, 137808.

  78. Fayazi, M. (2020). Removal of mercury (II) from wastewater using a new and effective composite: sulfur-coated magnetic carbon nanotubes. Environmental science and pollution research, 27(11), 12270–12279.

    Article  Google Scholar 

  79. Fayyadh, A. A., & Jaduaa Alzubaidy, M. H. (2021). Green-synthesis of Ag2O nanoparticles for antimicrobial assays. Journal of the Mechanical Behavior of Materials, 30(1), 228–236.

    Article  Google Scholar 

  80. Feicht, P., & Eigler, S. (2018). Defects in graphene oxide as structural motifs. ChemNanoMat, 4(3), 244–252.

    Article  Google Scholar 

  81. Femila, E. E., Srimathi, R., & Deivasigamani, C. (2014). Removal of malachite green using silver nanoparticles via adsorption and catalytic degradation. International Journal of Pharmacy and Pharmaceutical Sciences, 6, 579–583.

    Google Scholar 

  82. Ferenj, A. E., Kabtamu, D. M., Assen, A. H., Gedda, G., Muhabie, A. A., Berrada, M., & Girma, W. M. (2024). Hagenia abyssinica-biomediated synthesis of a magnetic Fe3O4/NiO nanoadsorbent for adsorption of lead from wastewater. ACS Omega, 9(6), 6803–6814.

    Article  Google Scholar 

  83. Filgueiras, A. L., Paschoal, D., Dos Santos, H. F., & Sant’Ana, A. C. (2015). Adsorption study of antibiotics on silver nanoparticle surfaces by surface-enhanced Raman scattering spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 979–985.

    Article  Google Scholar 

  84. Fu, Y., Liu, X., & Chen, G. (2019). Adsorption of heavy metal sewage on nano-materials such as titanate/TiO2 added lignin. Results in Physics, 12, 405–411.

    Article  Google Scholar 

  85. Fu, Q., Lou, J., Shi, D., Zhou, S., Hu, J., Wang, Q., et al. (2022). Adsorption and removal mechanism of Pb (II) by oxidized multi-walled carbon nanotubes. Journal of the Iranian Chemical Society, 19(7), 2883–2890.

    Article  Google Scholar 

  86. Galdino Jr, C. J. S., Maia, A. D., Meira, H. M., Souza, T. C., Amorim, J. D., Almeida, F. C., ..., & Sarubbo, L. A. (2020). Use of a bacterial cellulose filter for the removal of oil from wastewater. Process Biochemistry, 91, 288–296.

  87. Ganaie, S. U., Abbasi, T., Anuradha, J., & Abbasi, S. A. (2014). Biomimetic synthesis of silver nanoparticles using the amphibious weed ipomoea and their application in pollution control. Journal of King Saud University-Science, 26(3), 222–229.

    Article  Google Scholar 

  88. Gao, J., Liu, X., Ren, P., Gao, J., Chen, Y., & Chen, Z. (2022). Removal behavior and mechanism of amino/carboxylatefunctionalized Fe@ SiO2 for Cr (VI) and Cd (II) from aqueous solutions. Environmental Science and Pollution Research, 29(47), 72058–72073.

    Article  Google Scholar 

  89. Ghaemi, N., Daraei, P., & Akhlaghi, F. S. (2018). Polyethersulfone nanofiltration membrane embedded by chitosan nanoparticles: Fabrication, characterization and performance in nitrate removal from water. Carbohydrate Polymers, 191, 142–151.

    Article  Google Scholar 

  90. Goodarzi, N., Ashrafi-Peyman, Z., Khani, E., & Moshfegh, A. Z. (2023). Recent progress on semiconductor heterogeneous photocatalysts in clean energy production and environmental remediation. Catalysts, 13(7), 1102.

    Article  Google Scholar 

  91. Gomeceria, M. A. D., Miranda, M. L. I. C., Lopez, E. C. R., & Perez, J. V. D. (2024, February). Fabrication of paper-based silver nanoparticle (AgNP) sensors for smartphone-based colorimetric detection of Cu (II) in water. In Materials science forum (Vol. 1112, pp. 109–117). Trans-Tech Publications Ltd.

    Google Scholar 

  92. Góralczyk, K., & Majcher, A. (2019). Are the civilization diseases the result of organohalogen environmental pollution?-Review. Acta Biochimica Polonica, 66(2), 123–127.

    Google Scholar 

  93. Graboski, A. M., Martinazzo, J., Ballen, S. C., Steffens, J., & Steffens, C. (2020). Nanosensors for water quality control. In Micro and Nano Technology, Nanotechnology in the Beverage Industry, 115–128. Elsevier.

  94. Gul, A., Khaligh, N. G., & Julkapli, N. M. (2021). Surface modification of carbon-based nanoadsorbents for the advanced wastewater treatment. Journal of Molecular Structure, 1235, 130148.

    Article  Google Scholar 

  95. Harroun, S. G., Prévost-Tremblay, C., Lauzon, D., Desrosiers, A., Wang, X., Pedro, L., & Vallée-Bélisle, A. (2018). Programmable DNA switches and their applications. Nanoscale, 10(10), 4607–4641.

    Article  Google Scholar 

  96. Hegazy, I., Ali, M. E. A., Zaghlool, E. H., & Elsheikh, R. (2021). Heavy metals adsorption from contaminated water using moringa seeds/olive pomace byproducts. Applied Water Science, 11, 95.

    Article  Google Scholar 

  97. Hernandez-Vargas, G., Sosa-Hernández, J. E., Saldarriaga-Hernandez, S., Villalba-Rodríguez, A. M., Parra-Saldivar, R., & Iqbal, H. M. (2018). Electrochemical biosensors: A solution to pollution detection with reference to environmental contaminants. Biosensors, 8(2), 29.

    Article  Google Scholar 

  98. Hitam, C. N. C., Jalil, A. A., Triwahyono, S., Rahman, A. F. A., Hassan, N. S., Khusnun, N. F., ..., & Ahmad, A. (2018). Effect of carbon-interaction on structure-photoactivity of Cu doped amorphous TiO2 catalysts for visible-light-oriented oxidative desulphurization of dibenzothiophene. Fuel, 216, 407–417.

  99. Huang, K., Li, C., Zheng, Y., Wang, L., Wang, W., & Meng, X. (2022). Recent advances on silver-based photocatalysis: Photocorrosion inhibition, visible-light responsivity enhancement, and charges separation acceleration. Separation and Purification Technology, 283, 120194.

    Article  Google Scholar 

  100. Humayun, M., Wang, C., & Luo, W. (2022). Recent progress in the synthesis and applications of composite photocatalysts: a critical review. Small Methods, 6(2), 2101395.

    Article  Google Scholar 

  101. Ihsanullah, Al-Khaldi, F. A., Abu-Sharkh, B., Abulkibash, A. M., Qureshi, M. I., Laoui, T., & Atieh, M. A. (2016). Effect of acid modification on adsorption of hexavalent chromium (Cr (VI)) from aqueous solution by activated carbon and carbon nanotubes. Desalination and Water Treatment, 57(16), 7232–7244.

    Article  Google Scholar 

  102. Islas Garcia, A. B. (2021). Effective photocatalytic waste water treatment system using metal oxides semiconductors: A review, 1–40.

  103. Jafari, A., Sadeghi, M., Tirgir, F., & Barghaei, M. (2021). Photocatalytic removal of naphthalene (C10H8) from aqueous environments using sulfur and nitrogen doped titanium dioxide (TiO2-NS) coated on glass microbullets in presence of sunlight. Journal of Shahrekord University of Medical Sciences, 23(1), 34–43.

    Article  Google Scholar 

  104. Javaid, M., Haleem, A., Singh, R. P., Rab, S., & Suman, R. (2021). Exploring the potential of nanosensors: A brief overview. Sensors International, 2, 100130.

    Article  Google Scholar 

  105. Jayakrishnan, A. R., Alex, K. V., Tharakan, A. T., Kamakshi, K., Silva, J. P., Prasad, M. S., ..., & Gomes, M. J. (2020). Barium‐doped zinc oxide thin films as highly efficient and reusable photocatalysts. ChemistrySelect, 5(9), 2824–2834.

  106. Jeevanantham, S., Saravanan, A., Hemavathy, R. V., Kumar, P. S., Yaashikaa, P. R., & Yuvaraj, D. (2019). Removal of toxic pollutants from water environment by phytoremediation: A survey on application and future prospects. Environmental Technology & Innovation, 13, 264–276.

    Article  Google Scholar 

  107. Kang, H., Shi, J., Liu, L., Shan, M., Xu, Z., Li, N., et al. (2018). Sandwich morphology and superior dye-removal performances for nanofiltration membranes self-assemblied via graphene oxide and carbon nanotubes. Applied Surface Science, 428, 990–999.

    Article  Google Scholar 

  108. Karimi, Z., Karimi, L., & Shokrollahi, H. (2013). Nano-magnetic particles used in biomedicine: Core and coating materials. Materials Science and Engineering: C, 33(5), 2465–2475.

    Article  Google Scholar 

  109. Kaykioglu, G., Bayramol, D. V., & Yildiz, A. (2023). Adsorption of AR114 onto humic acid-modified Fe3O4 nanoparticles. Industria Textila, 74(6), 625–632.

    Article  Google Scholar 

  110. Keyhanian, F., Shariati, S., Faraji, M., & Hesabi, M. (2016). Magnetite nanoparticles with surface modification for removal of methyl violet from aqueous solutions. Arabian Journal of Chemistry, 9, S348–S354.

    Article  Google Scholar 

  111. Khajeh, M., Laurent, S., & Dastafkan, K. (2013). Nanoadsorbents: Classification, preparation, and applications (with emphasis on aqueous media). Chemical Reviews, 113(10), 7728–7768.

    Article  Google Scholar 

  112. Khan, M. M., Ansari, S. A., Pradhan, D., Ansari, M. O., Lee, J., & Cho, M. H. (2014). Band gap engineered TiO 2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. Journal of Materials Chemistry A, 2(3), 637–644.

    Article  Google Scholar 

  113. Khan, M., & Lo, I. M. (2017). Removal of ionizable aromatic pollutants from contaminated water using nano γ-Fe2O3 based magnetic cationic hydrogel: Sorptive performance, magnetic separation and reusability. Journal of Hazardous Materials, 322, 195–204.

    Article  Google Scholar 

  114. Khare, N., Bajpai, J., & Bajpai, A. K. (2021). Efficient graphene-coated iron oxide (GCIO) nanoadsorbent for removal of lead and arsenic ions. Environmental Technology, 42(14), 2187–2201.

    Article  Google Scholar 

  115. Kim, J. M., Kim, J. H., Lee, C. Y., Jerng, D. W., & Ahn, H. S. (2018). Toluene and acetaldehyde removal from air on to graphene-based adsorbents with microsized pores. Journal of Hazardous Materials, 344, 458–465.

    Article  Google Scholar 

  116. Kim, S. G., Dhandole, L. K., Seo, Y. S., Chung, H. S., Chae, W. S., Cho, M., & Jang, J. S. (2018). Active composite photocatalyst synthesized from inactive Rh & Sb doped TiO2 nanorods: Enhanced degradation of organic pollutants & antibacterial activity under visible light irradiation. Applied Catalysis A: General, 564, 43–55.

    Article  Google Scholar 

  117. Kocijan, M., Ćurković, L., Bdikin, I., Otero-Irurueta, G., Hortigüela, M. J., Gonçalves, G., ..., & Podlogar, M. (2021). Immobilised rGO/TiO2 nanocomposite for multi-cycle removal of methylene blue dye from an aqueous medium. Applied Sciences, 12(1), 385.

  118. Kong, Z., Li, L., Xue, Y., Yang, M., & Li, Y. Y. (2019). Challenges and prospects for the anaerobic treatment of chemical-industrial organic wastewater: A review. Journal of Cleaner Production, 231, 913–927.

    Article  Google Scholar 

  119. Kubheka, G., Adeola, A. O., & Forbes, P. B. (2022). Hexadecylamine functionalised graphene quantum dots as suitable nano-adsorbents for phenanthrene removal from aqueous solution. RSC advances, 12(37), 23922–23936.

    Article  Google Scholar 

  120. Kumar, V., & Guleria, P. (2020). Application of DNA-nanosensor for environmental monitoring: Recent advances and perspectives. Current Pollution Reports, 1–21.

  121. Kumar, S., Himanshi Prakash, J., Verma, A., Suman Jasrotia, R., et al. (2023). A review on properties and environmental applications of graphene and its derivative-based composites. Catalysts, 13(1), 111.

    Article  Google Scholar 

  122. Kuo, C. Y., Wu, C. H., & Wu, J. Y. (2008). Adsorption of direct dyes from aqueous solutions by carbon nanotubes: Determination of equilibrium, kinetics and thermodynamics parameters. Journal of Colloid and Interface Science, 327(2), 308–315.

    Article  Google Scholar 

  123. Kyzas, G. Z., Deliyanni, E. A., & Matis, K. A. (2014). Graphene oxide and its application as an adsorbent for wastewater treatment. Journal of Chemical Technology & Biotechnology, 89(2), 196–205.

    Article  Google Scholar 

  124. Laborde, A., Tomasina, F., Bianchi, F., Bruné, M. N., Buka, I., Comba, P., ..., & Landrigan, P. J. (2015). Children’s health in Latin America: The influence of environmental exposures. Environmental Health Perspectives, 123(3), 201–209.

  125. Lakhotia, S. R., Mukhopadhyay, M., & Kumari, P. (2018). Cerium oxide nanoparticles embedded thin-film nanocomposite nanofiltration membrane for water treatment. Scientific Reports, 8(1), 1–10.

    Article  Google Scholar 

  126. Laouini, S. E., Bouafia, A., Soldatov, A. V., Algarni, H., Tedjani, M. L., Ali, G. A., & Barhoum, A. (2021). Green synthesized of Ag/Ag2O nanoparticles using aqueous leaves extracts of Phoenix dactylifera L. and their azo dye photodegradation. Membranes, 11(7), 468.

    Article  Google Scholar 

  127. Le, T. S., Dao, T. H., Nguyen, D. C., Nguyen, H. C., & Balikhin, I. L. (2015). Air purification equipment combining a filter coated by silver nanoparticles with a nano-TiO2 photocatalyst for use in hospitals. Advances in Natural Sciences: Nanoscience and Nanotechnology, 6(1), 015016.

    Google Scholar 

  128. Lee, H., Paeng, K., & Kim, I. S. (2018). A review of doping modulation in graphene. Synthetic Metals, 244, 36–47.

    Article  Google Scholar 

  129. Lee, K. M., Lai, C. W., Ngai, K. S., & Juan, J. C. (2016). Recent developments of zinc oxide based photocatalyst in water treatment technology: A review. Water Research, 88, 428–448.

    Article  Google Scholar 

  130. Lee, T. X. (2022). Applications and future perspectives of photocatalytic coatings for air purification and self cleaning. Doctoral dissertation, UTAR.

    Google Scholar 

  131. Li, G., Huang, S., Zhu, N., Yuan, H., & Ge, D. (2021). Near-infrared responsive upconversion glass-ceramic@ BiOBr heterojunction for enhanced photodegradation performances of norfloxacin. Journal of Hazardous Materials, 403, 123981.

    Article  Google Scholar 

  132. Li, J., Zhang, D., Yang, T., Yang, S., Yang, X., & Zhu, H. (2018). Nanofibrous membrane of graphene oxide-in-polyacrylonitrile composite with low filtration resistance for the effective capture of PM2. 5. Journal of Membrane Science, 551, 85–92.

    Article  Google Scholar 

  133. Li, Q., Yu, J., Zhou, F., & Jiang, X. (2015). Synthesis and characterization of dithiocarbamate carbon nanotubes for the removal of heavy metal ions from aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 482, 306–314.

    Article  Google Scholar 

  134. Li, R., Li, T., & Zhou, Q. (2020). Impact of titanium dioxide (TiO2) modification on its application to pollution treatment—A review. Catalysts, 10(7), 804.

    Article  MathSciNet  Google Scholar 

  135. Li, T., Hu, R., Chen, Z., Li, Q., Huang, S., Zhu, Z., & Zhou, L. F. (2018). Fine particulate matter (PM2. 5): The culprit for chronic lung diseases in China. Chronic Diseases and Translational Medicine, 4(03), 176–186.

    Article  Google Scholar 

  136. Li, X., Liu, Y., Zhang, C., Wen, T., Zhuang, L., Wang, X., ..., & Wang, X. (2018). Porous Fe2O3 microcubes derived from metal organic frameworks for efficient elimination of organic pollutants and heavy metal ions. Chemical Engineering Journal, 336, 241–252.

  137. Lim, T. T., & Yap, P. S. (2016). Treatment of RO concentrate for enhanced water recovery from wastewater treatment plant effluent. Advanced Treatment Technologies for Urban Wastewater Reuse, The Handbook of Environmental Chemistry, 45, 247–268.

  138. Lisjak, D., & Mertelj, A. (2018). Anisotropic magnetic nanoparticles: A review of their properties, syntheses and potential applications. Progress in Materials Science, 95, 286–328.

    Article  Google Scholar 

  139. Liu, T., Lawluvy, Y., Shi, Y., et al. (2022). Adsorption of cadmium and lead from aqueous solution using modified biochar: A review. Journal of Environmental Chemical Engineering, 10, 106502.

    Article  Google Scholar 

  140. Loc, T. T., Dat, N. D., & Tran, H. N. (2023). Nano-sized hematite-assembled carbon spheres for effectively adsorbing paracetamol in water: Important role of iron. Korean Journal of Chemical Engineering, 40(12), 3029–3038.

    Article  Google Scholar 

  141. Lv, J., Christie, P., & Zhang, S. (2019). Uptake, translocation, and transformation of metal-based nanoparticles in plants: Recent advances and methodological challenges. Environmental Science: Nano, 6(1), 41–59.

    Google Scholar 

  142. Ma, W., Li, Y., Gao, S., Cui, J., Qu, Q., Wang, Y., ..., & Fu, G. (2020). Self-healing and superwettable nanofibrous membranes with excellent stability toward multifunctional applications in water purification. ACS Applied Materials & Interfaces, 12(20), 23644–23654.

  143. Maeda, K. (2019). Metal-complex/semiconductor hybrid photocatalysts and photoelectrodes for CO2 reduction driven by visible light. Advanced Materials, 31(25), 1808205.

    Article  Google Scholar 

  144. Mahlangu, T. O., Thwala, J. M., Mamba, B. B., D’Haese, A., & Verliefde, A. R. D. (2015). Factors governing combined fouling by organic and colloidal foulants in cross-flow nanofiltration. Journal of Membrane Science, 491, 53–62.

    Article  Google Scholar 

  145. Maiti, D., Mukhopadhyay, S., & Devi, P. S. (2017). Evaluation of mechanism on selective, rapid, and superior adsorption of Congo red by reusable mesoporous α-Fe2O3 nanorods. ACS Sustainable Chemistry & Engineering, 5(12), 11255–11267.

    Article  Google Scholar 

  146. Mamba, G., Pulgarin, C., Kiwi, J., Bensimon, M., & Rtimi, S. (2017). Synchronic coupling of Cu2O (p)/CuO (n) semiconductors leading to Norfloxacin degradation under visible light: Kinetics, mechanism and film surface properties. Journal of Catalysis, 353, 133–140.

    Article  Google Scholar 

  147. Mano, T., Nishimoto, S., Kameshima, Y., & Miyake, M. (2015). Water treatment efficacy of various metal oxide semiconductors for photocatalytic ozonation under UV and visible light irradiation. Chemical Engineering Journal, 264, 221–229.

    Article  Google Scholar 

  148. Mashkoor, F., Nasar, A., & Inamuddin. (2020). Carbon nanotube-based adsorbents for the removal of dyes from waters: A review. Environmental Chemistry Letters, 18, 605–629.

    Article  Google Scholar 

  149. Mastropietro, T. F., Bruno, R., Pardo, E., & Armentano, D. (2021). Reverse osmosis and nanofiltration membranes for highly efficient PFASs removal: Overview, challenges and future perspectives. Dalton Transactions, 50(16), 5398–5410.

    Article  Google Scholar 

  150. Matilainen, A., Vepsäläinen, M., & Sillanpää, M. (2010). Natural organic matter removal by coagulation during drinking water treatment: A review. Advances in Colloid and Interface Science, 159(2), 189–197.

    Article  Google Scholar 

  151. Matsunaga, T., Tomoda, R., Nakajima, T., & Wake, H. (1985). Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiology Letters, 29(1–2), 211–214.

    Article  Google Scholar 

  152. Minitha, C. R., Lalitha, M., Jeyachandran, Y. L., Senthilkumar, L., & RT, R. K. (2017). Adsorption behaviour of reduced graphene oxide towards cationic and anionic dyes: Co-action of electrostatic and π–π interactions. Materials Chemistry and Physics, 194, 243–252.

    Article  Google Scholar 

  153. Mohammad, A. W., Teow, Y. H., Ang, W. L., Chung, Y. T., Oatley-Radcliffe, D. L., & Hilal, N. (2015). Nanofiltration membranes review: Recent advances and future prospects. Desalination, 356, 226–254.

    Article  Google Scholar 

  154. Mohammadi, A., & Aliakbarzadeh Karimi, A. (2017). Methylene blue removal using surface-modified TiO2 nanoparticles: A comparative study on adsorption and photocatalytic degradation. Journal of Water and Environmental Nanotechnology, 2(2), 118–128.

    Google Scholar 

  155. Mohammadi, A., & Mousavi, S. H. (2018). Enhanced photocatalytic performance of TiO2 by β-cyclodextrin for the degradation of organic dyes. Journal of Water and Environmental Nanotechnology, 3(3), 254–264.

    Google Scholar 

  156. Mohammed, S. S., Shnain, Z. Y., & Abid, M. F. (2022). Use of TiO2 in photocatalysis for air purification and wastewater treatment: A review. Engineering and Technology Journal, 40, 1131–1143.

    Article  Google Scholar 

  157. Mondal, K., Bhattacharyya, S., & Sharma, A. (2014). Photocatalytic degradation of naphthalene by electrospun mesoporous carbon-doped anatase TiO2 nanofiber mats. Industrial & Engineering Chemistry Research, 53(49), 18900–18909.

    Article  Google Scholar 

  158. Mondal, P., Reichelt-Brushett, A. J., Jonathan, M. P., Sujitha, S. B., & Sarkar, S. K. (2018). Pollution evaluation of total and acid-leachable trace elements in surface sediments of Hooghly River Estuary and Sundarban Mangrove Wetland (India). Environmental Science and Pollution Research, 25, 5681–5699.

    Article  Google Scholar 

  159. Munawar, A., Ong, Y., Schirhagl, R., Tahir, M. A., Khan, W. S., & Bajwa, S. Z. (2019). Nanosensors for diagnosis with optical, electric and mechanical transducers. RSC Advances, 9(12), 6793–6803.

    Article  Google Scholar 

  160. Munyai, S., Tetana, Z. N., Mathipa, M. M., Ntsendwana, B., & Hintsho-Mbita, N. C. (2021). Green synthesis of cadmium sulphide nanoparticles for the photodegradation of malachite green dye, sulfisoxazole and removal of bacteria. Optik, 247, 167851.

    Article  Google Scholar 

  161. Muppalla, R., Jewrajka, S. K., & Reddy, A. V. R. (2015). Fouling resistant nanofiltration membranes for the separation of oil–water emulsion and micropollutants from water. Separation and Purification Technology, 143, 125–134.

    Article  Google Scholar 

  162. Muthukumar, H., Palanirajan, S. K., Shanmugam, M. K., Arivalagan, P., & Gummadi, S. N. (2022). Photocatalytic degradation of caffeine and E. coli inactivation using silver oxide nanoparticles obtained by a facile green co-reduction method. Clean Technologies and Environmental Policy, 24(4), 1087–1098.

    Article  Google Scholar 

  163. Mydeen, S. S., Kumar, R. R., Kottaisamy, M., & Vasantha, V. S. (2020). Biosynthesis of ZnO nanoparticles through extract from Prosopis juliflora plant leaf: Antibacterial activities and a new approach by rust-induced photocatalysis. Journal of Saudi Chemical Society, 24(5), 393–406.

    Article  Google Scholar 

  164. Nagabooshanam, S., John, A. T., Wadhwa, S., Mathur, A., Krishnamurthy, S., & Bharadwaj, L. M. (2020). Electro-deposited nano-webbed structures based on polyaniline/multi walled carbon nanotubes for enzymatic detection of organophosphates. Food Chemistry, 323, 126784.

    Article  Google Scholar 

  165. Namdeo, M. (2018). Magnetite nanoparticles as effective adsorbent for water purification-A review. Advances in Recycling & Waste Management, 2(3), 126–129.

    Article  Google Scholar 

  166. Naresh, V., & Lee, N. (2021). A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors, 21(4), 1109.

    Article  Google Scholar 

  167. Nasab, N. K., Sabouri, Z., Ghazal, S., & Darroudi, M. (2020). Green-based synthesis of mixed-phase silver nanoparticles as an effective photocatalyst and investigation of their antibacterial properties. Journal of Molecular Structure, 1203, 127411.

    Article  Google Scholar 

  168. National Geographic, (2018). Pollution. National Geographic Periodicals October, 2018.

  169. Nikseresht, M., Iranshahi, D., & Badiei, A. (2024). Fabrication of novel eco-friendly visible-light responsive MIL88A decorated with uniform titanium dioxide for efficient phenol removal. Journal of Materials Science: Materials in Electronics, 35(3), 1–17.

    Google Scholar 

  170. Nguyen, T. T., Nam, S. N., Kim, J., & Oh, J. (2020). Photocatalytic degradation of dissolved organic matter under ZnO-catalyzed artificial sunlight irradiation system. Scientific Reports, 10(1), 13090.

    Article  Google Scholar 

  171. Obotey Ezugbe, E., & Rathilal, S. (2020). Membrane technologies in wastewater treatment: A review. Membranes, 10(5), 89.

    Article  Google Scholar 

  172. Padaki, M., Murali, R. S., Abdullah, M. S., Misdan, N., Moslehyani, A., Kassim, M. A., ..., & Ismail, A. F. (2015). Membrane technology enhancement in oil–water separation. A review. Desalination, 357, 197–207.

  173. Pal, K., Aljabali, A. A., Kralj, S., Thomas, S., & de Souza, F. G. (2021). Graphene-assembly liquid crystalline and nanopolymer hybridization: A review on switchable device implementations. Chemosphere, 263, 128104.

    Article  Google Scholar 

  174. Pal, K., Si, A., El-Sayyad, G. S., Elkodous, M. A., Kumar, R., El-Batal, A. I., ..., & Thomas, S. (2021). Cutting edge development on graphene derivatives modified by liquid crystal and CdS/TiO2 hybrid matrix: Optoelectronics and biotechnological aspects. Critical Reviews in Solid State and Materials Sciences, 46(5), 385–449.

  175. Pandey, S. R., Jegatheesan, V., Baskaran, K., & Shu, L. (2012). Fouling in reverse osmosis (RO) membrane in water recovery from secondary effluent: A review. Reviews in Environmental Science and Bio/Technology, 11, 125–145.

    Article  Google Scholar 

  176. Peters, C. D., Rantissi, T., Gitis, V., & Hankins, N. P. (2021). Retention of natural organic matter by ultrafiltration and the mitigation of membrane fouling through pre-treatment, membrane enhancement, and cleaning-A review. Journal of Water Process Engineering, 44, 102374.

    Article  Google Scholar 

  177. Purkait, P., Bhattacharyya, A., Roy, S., Maitra, S., Das, G., & Ghosh Chaudhuri, M. (2020). Green synthesis of TiO2 nanoparticle: Its characterization and potential application in zoxamide photodegradation. Journal of Water and Environmental Nanotechnology, 5(3), 191–203.

    Google Scholar 

  178. Rabiee Faradonbeh, M., Dadkhah, A. A., Rashidi, A., Tasharofi, S., & Mansourkhani, F. (2018). Newly MOF-graphene hybrid nanoadsorbent for removal of Ni (II) from aqueous phase. Journal of Inorganic and Organometallic Polymers and Materials, 28, 829–836.

    Article  Google Scholar 

  179. Rajbongshi, A., & Gogoi, S. B. (2023). Microfiltration, ultrafiltration and nanofiltration as a post-treatment of biological treatment process with references to oil field produced water of Moran oilfield of Assam. Petroleum Research, 9(1), 143–154.

    Article  Google Scholar 

  180. Roche, R., & Yalcinkaya, F. (2019). Electrospun polyacrylonitrile nanofibrous membranes for point-of-use water and air cleaning. ChemistryOpen, 8(1), 97.

    Article  Google Scholar 

  181. Rodríguez, C., Briano, S., & Leiva, E. (2020). Increased adsorption of heavy metal ions in multi-walled carbon nanotubes with improved dispersion stability. Molecules, 25(14), 3106.

    Article  Google Scholar 

  182. Rodrigues, M. S., Borges, J., Lopes, C., Pereira, R. M., Vasilevskiy, M. I., & Vaz, F. (2021). Gas sensors based on localized surface plasmon resonances: Synthesis of oxide films with embedded metal nanoparticles, theory and simulation, and sensitivity enhancement strategies. Applied Sciences, 11(12), 5388.

    Article  Google Scholar 

  183. Rohit, J. V., & Kailasa, S. K. (2014). Cyclen dithiocarbamate-functionalized silver nanoparticles as a probe for colorimetric sensing of thiram and paraquat pesticides via host–guest chemistry. Journal of Nanoparticle Research, 16(11), 1–16.

    Article  Google Scholar 

  184. Russell, H. S., Frederickson, L. B., Hertel, O., Ellermann, T., & Jensen, S. S. (2021). A review of photocatalytic materials for urban NOx remediation. Catalysts, 11(6), 675.

    Article  Google Scholar 

  185. Saeed, K., Khan, I., & Sadiq, M. (2016). Synthesis of graphene-supported bimetallic nanoparticles for the sunlight photodegradation of Basic Green 5 dye in aqueous medium. Separation Science and Technology, 51(8), 1421–1426.

    Article  Google Scholar 

  186. Saha, P., Billah, M. M., Islam, A. N., Habib, M. A., & Mahiuddin, M. (2023). Green synthesized silver nanoparticles: a potential antibacterial agent, antioxidant, and colorimetric nanoprobe for the detection of Hg2+ ions. Global Challenges, 7(8), 2300072.

    Article  Google Scholar 

  187. Saito, T., Iwase, T., Horie, J., & Morioka, T. (1992). Mode of photocatalytic bactericidal action of powdered semiconductor TiO2 on mutans streptococci. Journal of Photochemistry and Photobiology B: Biology, 14(4), 369–379.

    Article  Google Scholar 

  188. Sajid, M., Asif, M., Baig, N., Kabeer, M., Ihsanullah, I., & Mohammad, A. W. (2022). Carbon nanotubes-based adsorbents: Properties, functionalization, interaction mechanisms, and applications in water purification. Journal of Water Process Engineering, 47, 102815.

    Article  Google Scholar 

  189. Sanches, S., Galinha, C. F., Crespo, M. B., Pereira, V. J., & Crespo, J. G. (2013). Assessment of phenomena underlying the removal of micropollutants during water treatment by nanofiltration using multivariate statistical analysis. Separation and Purification Technology, 118, 377–386.

    Article  Google Scholar 

  190. Santhi, K., Rani, C., & Karuppuchamy, S. (2016). Synthesis and characterization of a novel SnO/SnO2 hybrid photocatalyst. Journal of Alloys and Compounds, 662, 102–107.

    Article  Google Scholar 

  191. Santhosh, C., Velmurugan, V., Jacob, G., Jeong, S. K., Grace, A. N., & Bhatnagar, A. (2016). Role of nanomaterials in water treatment applications: A review. Chemical Engineering Journal, 306, 1116–1137.

    Article  Google Scholar 

  192. Saravanan, R., Gracia, F., & Stephen, A. (2017). Basic principles, mechanism, and challenges of photocatalysis. Nanocomposites for visible light-induced photocatalysis, Springer Series on Polymer and Composite Materials, 19–40.

  193. Seidlerová, J., Šafařík, I., Rozumová, L., Šafaříková, M., & Motyka, O. (2016). TiO2-based sorbent of lead ions. Procedia Materials Science, 12, 147–152.

    Article  Google Scholar 

  194. Sellaoui, L., Schnorr, C. E., Dhaouadi, F., Taamalli, S., Louis, F., El Bakali, A., et al. (2022). Modeling the adsorption of divalent metallic cations onto multi-walled carbon nanotubes functionalized with COOH. Journal of Molecular Liquids, 366, 120275.

    Article  Google Scholar 

  195. Shadbad, M. J., Mohebbi, A., & Soltani, A. (2011). Mercury (II) removal from aqueous solutions by adsorption on multi-walled carbon nanotubes. Korean Journal of Chemical Engineering, 28, 1029–1034.

    Article  Google Scholar 

  196. Shah, A., Haq, S., Rehman, W., Waseem, M., Shoukat, S., & Rehman, M. U. (2019). Photocatalytic and antibacterial activities of Paeonia emodi mediated silver oxide nanoparticles. Materials Research Express, 6(4), 045045.

    Article  Google Scholar 

  197. Sharaf El-Deen, S. E. A., & Zhang, F. S. (2016). Immobilisation of TiO2-nanoparticles on sewage sludge and their adsorption for cadmium removal from aqueous solutions. Journal of Experimental Nanoscience, 11(4), 239–258.

    Article  Google Scholar 

  198. Shi, H., Shen, H., Miao, H., Jiang, J., Zhang, T., Zhang, Y., & Shen, Z. (2023). The preparation of Fe3O4-MnO2-SiO2-NH2 for selective adsorption of Pb (II) in mixed solution of Pb (II), Cu (II), and Ni (II). Water, Air, & Soil Pollution, 234(6), 1–17.

    Article  Google Scholar 

  199. Shi, X., Tal, G., Hankins, N. P., & Gitis, V. (2014). Fouling and cleaning of ultrafiltration membranes: A review. Journal of Water Process Engineering, 1, 121–138.

    Article  Google Scholar 

  200. Shim, J., Park, S., & Cho, K. H. (2021). Deep learning model for simulating influence of natural organic matter in nanofiltration. Water research, 197, 117070.

    Article  Google Scholar 

  201. Shirdel, B., & Behnajady, M. A. (2020). Visible-light-induced degradation of rhodamine B by Ba doped ZnO nanoparticles. Journal of Molecular Liquids, 315, 113633.

    Article  Google Scholar 

  202. Shkodra, B., Petrelli, M., Costa Angeli, M. A., Garoli, D., Nakatsuka, N., Lugli, P., & Petti, L. (2021). Electrolyte-gated carbon nanotube field-effect transistor-based biosensors: Principles and applications. Applied Physics Reviews, 8(4), 1–28.

  203. Shon, H. K., Phuntsho, S., Chaudhary, D. S., Vigneswaran, S., & Cho, J. (2013). Nanofiltration for water and wastewater treatment–A mini review. Drinking Water Engineering and Science, 6(1), 47–53.

    Article  Google Scholar 

  204. Simon, V., Manilo, M., Vanyorek, L., Csoma, Z., & Barany, S. (2020). Comparative study of Cu (II) adsorption by as prepared and oxidized multi-walled N-doped carbon nanotubes. Colloid Journal, 82, 427–436.

    Article  Google Scholar 

  205. Skinder, B. M., & Hamid, S. (2020). Nanotechnology: A modern technique for pollution abatement. Bioremediation and Biotechnology, Techniques for Noxious Substances Remediation, 4, 295–311.

  206. Sofla, S. J. D. (2019). The behaviour of silica nanoparticles in multi-phase ionic solutions: Enhanced oil recovery implications Doctoral dissertation (pp. 1–148). Memorial University of Newfoundland.

    Google Scholar 

  207. Šolić, M., Maletić, S., Kragulj Isakovski, M., Nikić, J., Watson, M., Kónya, Z., & Tričković, J. (2020). Comparing the adsorption performance of multiwalled carbon nanotubes oxidized by varying degrees for removal of low levels of copper, nickel and chromium (VI) from aqueous solutions. Water, 12(3), 723.

    Article  Google Scholar 

  208. Subalakshmi, A., Kavitha, B., Karthika, A., Nikhil, S., Srinivasan, N., Rajarajan, M., & Suganthi, A. (2021). Design of Mn and Zr incorporated Ag 2 O nanoparticles and their enhanced photocatalytic activity driven by visible light irradiation for degradation of rose bengal dye. New Journal of Chemistry, 45(4), 1876–1886.

    Article  Google Scholar 

  209. Subramaniam, M. N., Goh, P. S., Lau, W. J., Ng, B. C., & Ismail, A. F. (2019). Development of nanomaterial-based photocatalytic membrane for organic pollutants removal. In Advanced Nanomaterials for Membrane Synthesis and its Applications, Macro and Nano technologies, 2019, 45–67. Elsevier.

  210. Sujatha, G., Shanthakumar, S., & Chiampo, F. (2020). UV light-irradiated photocatalytic degradation of coffee processing wastewater using TiO2 as a catalyst. Environments, 7(6), 47.

    Article  Google Scholar 

  211. Sulaymon, I. D., Mei, X., Yang, S., Chen, S., Zhang, Y., Hopke, P. K., ..., & Zhang, Y. (2020). PM2. 5 in Abuja, Nigeria: Chemical characterization, source apportionment, temporal variations, transport pathways and the health risks assessment. Atmospheric Research, 237, 104833.

  212. Sumesh, E., Bootharaju, M. S., & Pradeep, T. (2011). A practical silver nanoparticle-based adsorbent for the removal of Hg2+ from water. Journal of Hazardous Materials, 189(1–2), 450–457.

    Article  Google Scholar 

  213. Sun, S., Song, P., Cui, J., & Liang, S. (2019). Amorphous TiO 2 nanostructures: Synthesis, fundamental properties and photocatalytic applications. Catalysis Science & Technology, 9(16), 4198–4215.

    Article  Google Scholar 

  214. Suvarna, K. S., & Binitha, N. N. (2020). Graphene preparation by Jaggery assisted ball-milling of graphite for the adsorption of Cr (VI). Materials Today: Proceedings, 25, 236–240.

    Google Scholar 

  215. Talebian, S., Wallace, G. G., Schroeder, A., Stellacci, F., & Conde, J. (2020). Nanotechnology-based disinfectants and sensors for SARS-CoV-2. Nature Nanotechnology, 15(8), 618–621.

    Article  Google Scholar 

  216. Tarannum, N., & Gautam, Y. K. (2019). Facile green synthesis and applications of silver nanoparticles: A state-of-the-art review. RSC Advances, 9(60), 34926–34948.

    Article  Google Scholar 

  217. Tatarchuk, T., Soltys, L., & Macyk, W. (2023). Magnetic adsorbents for removal of pharmaceuticals: a review of adsorption properties. Journal of Molecular Liquids, 384(3), 122174.

    Article  Google Scholar 

  218. Tee, G. T., Gok, X. Y., & Yong, W. F. (2022). Adsorption of pollutants in wastewater via biosorbents, nanoparticles and magnetic biosorbents: A review. Environmental Research, 212, 113248.

    Article  Google Scholar 

  219. Tiwari, P., Verma, M., Ambika, C., & H., Singh, P. P., Kanodia, S., & Verma, T. (2023). Titanium dioxide-based nanoparticles and their applications in water remediation. Journal of Environmental Engineering and Science, 19(1), 46–54.

    Article  Google Scholar 

  220. Tofighy, M. A., & Mohammadi, T. (2020). Divalent heavy metal ions removal from contaminated water using positively charged membrane prepared from a new carbon nanomaterial and HPEI. Chemical Engineering Journal, 388, 124192.

    Article  Google Scholar 

  221. Tolvtin, A. (2019). Porous C@ TiO2 nanomaterials for efficient wastewater treatment. Master's degree project, Luleå University of Technology Department of Civil, Environmental and Natural Resources Engineering, 1–48.

  222. Tom, A. P. (2021). Nanotechnology for sustainable water treatment—A review. Materials Today: Proceedings, 10, 16–78.

    Google Scholar 

  223. Torabi, S., Mansoorkhani, M. J. K., Majedi, A., & Motevalli, S. (2020). Synthesis, medical and photocatalyst applications of nano-Ag2O. Journal of Coordination Chemistry, 73(13), 1861–1880.

    Article  Google Scholar 

  224. Torres, I., Mehdi Aghaei, S., Rabiei Baboukani, A., Wang, C., & Bhansali, S. (2018). Individual gas molecules detection using zinc oxide–graphene hybrid nanosensor: A DFT study. C—Journal of Carbon Research, 4(3), 44.

    Article  Google Scholar 

  225. Vikesland, P. J. (2018). Nanosensors for water quality monitoring. Nature Nanotechnology, 13(8), 651–660.

    Article  Google Scholar 

  226. Vishwakarma, P. K., Pandey, S. K., Singh, A. K., Yadav, S. K., Shukla, P., Rathore, S., et al. (2023). Thermally stable, thin, ultralight, reusable, and flexible multiwalled carbon nanotube membranes for removal of heavy metals, polycyclic aromatic hydrocarbons, and particulates from coal smoke. ACS Applied Nano Materials, 6(14), 12957–12967.

    Article  Google Scholar 

  227. Wang, D., Liu, L., Jiang, X., Yu, J., & Chen, X. (2015). Adsorption and removal of malachite green from aqueous solution using magnetic β-cyclodextrin-graphene oxide nanocomposites as adsorbents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 466, 166–173.

    Article  Google Scholar 

  228. Wang, H., Zhang, L., Chen, Z., Hu, J., Li, S., Wang, Z., ..., & Wang, X. (2014). Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chemical Society Reviews, 43(15), 5234–5244.

  229. Wang, J., Chen, B., & Xing, B. (2016). Wrinkles and folds of activated graphene nanosheets as fast and efficient adsorptive sites for hydrophobic organic contaminants. Environmental Science & Technology, 50(7), 3798–3808.

    Article  Google Scholar 

  230. Wang, J., Chen, Z., & Chen, B. (2014). Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets. Environmental Science & Technology, 48(9), 4817–4825.

    Article  Google Scholar 

  231. Wang, J., Zhang, Z., Gao, X., Lin, X., Liu, Y., & Wang, S. (2019). A single fluorophore ratiometric nanosensor based on dual-emission DNA-templated silver nanoclusters for ultrasensitive and selective Pb2+ detection. Sensors and Actuators B: Chemical, 282, 712–718.

    Article  Google Scholar 

  232. Wang, P., Wang, F., Jiang, H., Zhang, Y., Zhao, M., Xiong, R., & Ma, J. (2020). Strong improvement of nanofiltration performance on micropollutant removal and reduction of membrane fouling by hydrolyzed-aluminum nanoparticles. Water Research, 175, 115649.

    Article  Google Scholar 

  233. Wang, P., Wang, X., Yu, S., Zou, Y., Wang, J., Chen, Z., ..., & Wang, X. (2016). Silica coated Fe3O4 magnetic nanospheres for high removal of organic pollutants from wastewater. Chemical Engineering Journal, 306, 280–288.

  234. Wang, Q., Bai, Y., Xie, J., Jiang, Q., & Qiu, Y. (2016). Synthesis and filtration properties of polyimide nanofiber membrane/carbon woven fabric sandwiched hot gas filters for removal of PM 2.5 particles. Powder Technology, 292, 54–63.

    Article  Google Scholar 

  235. Wang, S., Ng, C. W., Wang, W., Li, Q., & Li, L. (2012). A comparative study on the adsorption of acid and reactive dyes on multiwall carbon nanotubes in single and binary dye systems. Journal of Chemical & Engineering Data, 57(5), 1563–1569.

    Article  Google Scholar 

  236. Wang, X. Y., Narita, A., & Müllen, K. (2017). Precision synthesis versus bulk-scale fabrication of graphenes. Nature Reviews Chemistry, 2(1), 0100.

    Article  Google Scholar 

  237. Wang, X., Li, S., Yu, H., Yu, J., & Liu, S. (2011). Ag2O as a new visible-light photocatalyst: Self-stability and high photocatalytic activity. Chemistry–A European Journal, 17(28), 7777–7780.

    Article  Google Scholar 

  238. Wei, X., Wang, Z., Fan, F., Wang, J., & Wang, S. (2010). Advanced treatment of a complex pharmaceutical wastewater by nanofiltration: Membrane foulant identification and cleaning. Desalination, 251(1–3), 167–175.

    Article  Google Scholar 

  239. Wong, G. K., Lim, L. Z., Lim, M. J. W., Ong, L. L., Khezri, B., Pumera, M., & Webster, R. D. (2015). Evaluation of the sorbent properties of single-and multiwalled carbon nanotubes for volatile organic compounds through thermal desorption–gas chromatography/mass spectrometry. ChemPlusChem, 80(8), 1279–1287.

    Article  Google Scholar 

  240. World health statistics. (2021). Monitoring health for the sdgs, sustainable development goals. World Health Organization.

    Google Scholar 

  241. Wu, F., Yuan, Q., Wang, X., Luo, J., Song, Y., Lu, W., & Xu, H. (2023). Photocatalytic activity of electrospun Fe-doped ZnO nanofibers: Synthesis, characterization and applications. Environmental Progress & Sustainable Energy, 42(2), e13986.

    Article  Google Scholar 

  242. Wu, Y., Pang, H., Liu, Y., Wang, X., Yu, S., Fu, D., ..., & Wang, X. (2019). Environmental remediation of heavy metal ions by novel-nanomaterials: A review. Environmental Pollution, 246, 608–620.

  243. Wubbels, G. G. (1983). Catalysis of photochemical reactions. Accounts of Chemical Research, 16(8), 285–292.

    Article  Google Scholar 

  244. Xie, Y., Chen, C., Lu, X., Luo, F., Wang, C., Alsaedi, A., & Hayat, T. (2019). Porous NiFe-oxide nanocubes derived from Prussian blue analogue as efficient adsorbents for the removal of toxic metal ions and organic dyes. Journal of Hazardous Materials, 379, 120786.

    Article  Google Scholar 

  245. Yadav, N., Garg, V. K., Chhillar, A. K., & Rana, J. S. (2021). Detection and remediation of pollutants to maintain ecosustainability employing nanotechnology: A review. Chemosphere, 280, 130792.

    Article  Google Scholar 

  246. Yadav, S., Yadav, A., Bagotia, N., Sharma, A. K., & Kumar, S. (2023). Novel composites of Pennisetum glaucum with CNT: preparation, characterization and application for the removal of safranine O and methylene blue dyes from single and binary systems. Biomass Conversion and Biorefinery, 13(18), 16925–16942.

    Article  Google Scholar 

  247. Yan, Q., Lin, X., Chen, Z., & Chen, Z. (2023). Biosynthesis of bionanomaterials using Bacillus cereus for the recovery of rare earth elements from mine wastewater. Journal of Environmental Management, 329, 117098.

    Article  Google Scholar 

  248. Yaqoob, A. A., Parveen, T., Umar, K., & Mohamad Ibrahim, M. N. (2020). Role of nanomaterials in the treatment of wastewater: A review. Water, 12(2), 495.

    Article  Google Scholar 

  249. Yokwana, K., Kuvarega, A. T., Mhlanga, S. D., & Nxumalo, E. N. (2018). Mechanistic aspects for the removal of Congo red dye from aqueous media through adsorption over N-doped graphene oxide nanoadsorbents prepared from graphite flakes and powders. Physics and Chemistry of the Earth, Parts A/B/C, 107, 58–70.

    Article  Google Scholar 

  250. Yu, W., Liu, T., Crawshaw, J., Liu, T., & Graham, N. (2018). Ultrafiltration and nanofiltration membrane fouling by natural organic matter: Mechanisms and mitigation by pre-ozonation and pH. Water Research, 139, 353–362.

    Article  Google Scholar 

  251. Yuan, B., Sun, H., Zhao, S., Yang, H., Wang, P., Li, P., ..., & Niu, Q. J. (2019). Semi-aromatic polyamide nanofiltration membranes with tuned surface charge and pore size distribution designed for the efficient removal of Ca2+ and Mg2+. Separation and Purification Technology, 220, 162–175.

  252. Zada, A., Qu, Y., Ali, S., Sun, N., Lu, H., Yan, R., ..., & Jing, L. (2018). Improved visible-light activities for degrading pollutants on TiO2/g-C3N4 nanocomposites by decorating SPR Au nanoparticles and 2, 4-dichlorophenol decomposition path. Journal of Hazardous Materials, 342, 715–723.

  253. Zhang, H. Z., Xu, Z. L., Ding, H., & Tang, Y. J. (2017). Positively charged capillary nanofiltration membrane with high rejection for Mg2+ and Ca2+ and good separation for Mg2+ and Li+. Desalination, 420, 158–166.

    Article  Google Scholar 

  254. Zhang, Y., McKelvie, I. D., Cattrall, R. W., & Kolev, S. D. (2016). Colorimetric detection based on localised surface plasmon resonance of gold nanoparticles: Merits, inherent shortcomings and future prospects. Talanta, 152, 410–422.

    Article  Google Scholar 

  255. Zhao, X. E., Lei, C., Gao, Y., Gao, H., Zhu, S., Yang, X., ..., & Wang, H. (2017). A ratiometric fluorescent nanosensor for the detection of silver ions using graphene quantum dots. Sensors and Actuators B: Chemical, 253, 239–246.

  256. Zhou, H., Niu, H., Wang, H., & Lin, T. (2022). Self-healing superwetting surfaces, Their Fabrications, and Properties. Chemical Reviews, 123(2), 663–700.

    Article  Google Scholar 

  257. Zhou, L., Chandrasekaran, A. R., Punnoose, J. A., Bonenfant, G., Charles, S., Levchenko, O., ..., & Halvorsen, K. (2020). Programmable low-cost DNA-based platform for viral RNA detection. Science Advances, 6(39), eabc6246.

  258. Zhou, Q., Li, J., Wang, M., & Zhao, D. (2016). Iron-based magnetic nanomaterials and their environmental applications. Critical Reviews in Environmental Science and Technology, 46(8), 783–826.

    Article  Google Scholar 

  259. Zhou, Z., & Liu, R. (2017). Fe3O4@ polydopamine and derived Fe3O4@ carbon core–shell nanoparticles: Comparison in adsorption for cationic and anionic dyes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 522, 260–265.

    Article  Google Scholar 

  260. Zhu, N., Tang, J., Tang, C., Duan, P., Yao, L., Wu, Y., & Dionysiou, D. D. (2018). Combined CdS nanoparticles-assisted photocatalysis and periphytic biological processes for nitrate removal. Chemical Engineering Journal, 353, 237–245.

    Article  Google Scholar 

  261. Zularisam, A. W., Ismail, A. F., & Salim, R. (2006). Behaviours of natural organic matter in membrane filtration for surface water treatment—A review. Desalination, 194(1–3), 211–231.

    Article  Google Scholar 

  262. Zhang, J., Li, X., Xu, H., Zhang, W., Feng, X., Yao, Y., et al. (2023). Removal of Cd2+, Pb2+ and Ni2+ from water by adsorption onto magnetic composites prepared using humic acid from waste biomass. Journal of Cleaner Production, 411, 137237.

    Article  Google Scholar 

  263. Zhang, R. (2021). Fabrication of high performance nanofiltration membranes for wastewater treatment in the petroleum industry (pp. 1–180). Doctoral Dissertation, Department of Chemical Engineering.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, B.S.S. and A.R.S.; data curation, A.R.S., A.L.; formal analysis, N.L. and N.D.; investigation, B.S.S. and N.L.; methodology, B.S.S. and A.R.S.; supervision, B.S.S.; validation, B.S.S. and N.L.; writing original draft, B.S.S. and A.R.S.; writing—reviewing and editing, B.S.S., N.L. and P.S. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Baljeet Singh Saharan.

Ethics declarations

Conflict of Interest

None.

Research Involving Humans and Animals statement

None.

Informed Consent

Not applicable.

Ethical Approval

Not applicable.

Funding Statement

This work was supported by the Haryana State Council for Science Innovation & Technology (HSCSIT) Junior Research Fellowship and the Department of Molecular Biology and Biotechnology and Department of Microbiology, Chaudhary Charan Singh Haryana Agricultural University, Hisar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheoran, A.R., Lakra, N., Luhach, A. et al. Nano-engineered Solutions for Sustainable Environmental Cleanup. BioNanoSci. (2024). https://doi.org/10.1007/s12668-024-01370-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12668-024-01370-8

Keywords

Navigation