[go: up one dir, main page]

Skip to main content
Log in

Characteristics and Failure Behaviors of an MnCo2O4 Spinel Coating in High-Temperature Oxidation Processes

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

A spinel MnCo2O4 coating was successfully prepared by depositing amorphous precursors on AISI430 substrates, which was sintered at 1000 °C for 3 h. The coatings showed excellent high-temperature oxidation resistance. The mass gain of the coated specimen was only ∼0.64 mg/cm2 when oxidized at 800 °C for 200 h, approximately 30% of the uncoated specimen. The failure behavior of the MnCo2O4 coating under thermal loading was calculated using a finite-element model established by the Voronoi principle. The results indicate that the stresses were first concentrated in the middle of the coating and near the interface. When cracks appeared to sprout and expand, the stresses were concentrated at the crack tips and released elsewhere near the cracks. The failure behaviors of the coating have been discussed in terms of the number of cracks and the energy consumption of crack damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shen Z, Rong J, and Yu X, Ceram Int 46 (2020) 5821. https://doi.org/10.1016/j.ceramint.2019.11.032.

    Article  CAS  Google Scholar 

  2. Jia C, Wang Y, Molin S, Zhang Y, et al. J Alloys Compd 787 (2019) 1327. https://doi.org/10.1016/j.jallcom.2019.01.015.

    Article  CAS  Google Scholar 

  3. Cheng F, and Sun J, Int J Hydrog Energy 44 (2019) 18415. https://doi.org/10.1016/j.ijhydene.2019.05.060.

    Article  CAS  Google Scholar 

  4. Jiang SP, Chen X, Int J Hydrog Energy 39 (2014) 505. https://doi.org/10.1016/j.ijhydene.2013.10.042.

    Article  CAS  Google Scholar 

  5. Hosseini N, Abbasi M H, Karimzadeh F, and Choi G M, J Power Sources 273 (2015) 1073. https://doi.org/10.1016/j.jpowsour.2014.10.017.

    Article  CAS  Google Scholar 

  6. Hua B, Pu J, Gong W, Zhang J, et al. J Power Sources 185 (2008) 419. org/https://doi.org/10.1016/j.jpowsour.2008.06.055.

    Article  CAS  Google Scholar 

  7. Mirzaei M, Simchi A, Faghihi-Sani M A, and Yazdanyar A, Ceram Int 42 (2016) 6648. https://doi.org/10.1016/j.ceramint.2016.01.012.

    Article  CAS  Google Scholar 

  8. Lv J, Fan X, and Li Q, Surf Coat Technol 309 (2017) 1033. https://doi.org/10.1016/j.surfcoat.2016.10.039.

    Article  CAS  Google Scholar 

  9. Lv B, Jin X, Cao J, Xu B, et al. J Eur Ceram Soc 40 (2020) 3363. https://doi.org/10.1016/j.jeurceramsoc.2020.03.036.

    Article  CAS  Google Scholar 

  10. Fan XL, Xu R, Zhang WX, and Wang T J, Appl Surf Sci 258 (2012) 9816. https://doi.org/10.1016/j.apsusc.2012.06.036.

    Article  CAS  Google Scholar 

  11. Thouless M D, Li Z, Douville N J, and Takayama S, J Mech Phys Solids 59 (2011) 1927. https://doi.org/10.1016/j.jmps.2011.04.009.

    Article  CAS  Google Scholar 

  12. Wu C W, Chen G N, Zhang K, Luo G X, et al. Surf Coat Technol 201 (2006) 287. https://doi.org/10.1016/j.surfcoat.2005.11.115.

    Article  CAS  Google Scholar 

  13. Wang L, Yang J S, Ni J X, Liu C G, et al. Surf Coat Technol 285 (2016) 98. https://doi.org/10.1016/j.surfcoat.2015.11.036.

    Article  CAS  Google Scholar 

  14. Xu R, Fan XL, Zhang W X, and Wang T J Surf Coat Technol 253 (2014) 139. https://doi.org/10.1016/j.surfcoat.2014.05.026.

    Article  CAS  Google Scholar 

  15. Fan X L, Zhang W X, Wang T J, Sun Q. Surf Coat Technol 208 (2012) 7. https://doi.org/10.1016/j.surfcoat.2012.06.074.

    Article  CAS  Google Scholar 

  16. Song J, Qi H, Shi D, Yang X, et al. Surf Coat Technol 370 (2019) 113. https://doi.org/10.1016/j.surfcoat.2019.04.069.

    Article  CAS  Google Scholar 

  17. Wei Z Y, Cai H N, and Li C J Ceram Int 44 (2018) 22556. https://doi.org/10.1016/j.ceramint.2018.09.028.

    Article  CAS  Google Scholar 

  18. Han M, Huang J, Chen S Ceram Int 40 (2014) 2901. https://doi.org/10.1016/j.ceramint.2013.10.021.

    Article  CAS  Google Scholar 

  19. Wang X, Fan X, Sun Y, Xu R, et al. J Mater Sci 54 (2019) 10270. https://doi.org/10.1007/s10853-019-03620-7.

    Article  CAS  Google Scholar 

  20. Jiang J, Wang W, Zhao X, Liu Y, et al. Eng Fract Mech 196 (2018) 191. https://doi.org/10.1016/j.engfracmech.2018.04.031.

    Article  Google Scholar 

  21. van Nuland T F W, van Dommelen J A W, and Geers M G D Comput Mater Sci 186 (2021) 109947. https://doi.org/10.1016/j.commatsci.2020.109947.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (Grant Nos. 52161014 and 51665022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaolin Zhan or Zulai Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, S., Xie, J., Gao, W. et al. Characteristics and Failure Behaviors of an MnCo2O4 Spinel Coating in High-Temperature Oxidation Processes. Trans Indian Inst Met 75, 797–804 (2022). https://doi.org/10.1007/s12666-021-02507-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02507-z

Keywords

Navigation