[go: up one dir, main page]

Skip to main content
Log in

Quality assessment of water used for human consumption and irrigation purpose in parts of Tafna watershed (NW Algeria)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The quality of groundwater and surface water used for human consumption in Tafna watershed (NW Algeria) has been degraded because of contaminants originating from anthropogenic sources. Among these harmful contaminants, nitrate, phosphate and chloride ions originating from fertilizers are more common. This study was carried out in the upper and middle Tafna sub-watersheds with the aim of assessing the contamination degrees of drinking and irrigation water, with particular emphasis in relation to nitrate and chloride enrichments in the groundwater of Sebdou and Hennaya and surface water of upper Tafna and Sikkak wadis. Surface and groundwater samples were collected, during April and November in 2017 and analyzed. The concerned physicochemical parameters are pH, temperature (T), electrical conductivity (EC), total dissolved solids (TDS), chloride (Cl), nitrate (NO3), phosphate (PO43−), calcium (Ca2+), magnesium (Mg2+) and sodium (Na+). The obtained results are compared to human consumption (WHO and Algerian) and irrigation (FAO) water quality guidelines. In the middle Tafna sub-watershed, the nitrate contents of groundwater are, high exceeding the limits required by Algerian and WHO standards (< 50mgL−1). As for the upper Tafna sub-watershed, located upstream,, the situation seems to be less worrying regarding their use for human consumption in parts of this area. For irrigation use, most groundwater and surface water samples, when reported on the SAR diagram, fall in the field of C2S1, C3S1 and C4S1, depicting low sodium hazard and moderate to high salinity hazard and indicating that water could be used in almost all types of soil with little risk of exchangeable sodium ion exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ahamad A, Madhav S, Singh P, Pandey J, Khan AH (2018) Assessment of groundwater quality with special emphasis on nitrate contamination in parts of Varanasi City, Uttar Pradesh. India. Appl Water Sci 8:115. https://doi.org/10.1007/s13201-018-0759-x

    Article  Google Scholar 

  • Ahmed N, Bodrud-Doza M, Didar-UlIslamSM CMA, Muhib MI, Zahi A, Hossain S, Moniruzzaman M, Deb N, Bhuiyan MAQ (2018) Hydrogeochemical evaluation and statistical analysis of groundwater of Sylhet, north-eastern Bangladesh. Acta Geochim 38:440–455. https://doi.org/10.1007/s11631-018-0303-6

    Article  Google Scholar 

  • Alam F (2013) Evaluation of hydrogeochemical parameters of groundwater for suitability of domestic and irrigational purposes: a case study from central Ganga Plain, India. Arab J Geosci 7:4121–4131. https://doi.org/10.1007/s12517-013-1055-6

    Article  Google Scholar 

  • Appelo C, Postma D (2005) Geochemistry, groundwater and pollution, balkema, leiden. CRC Press, New York

    Google Scholar 

  • Ayers RS, Westcot DW (1985) Water quality for agriculture, FAO irrigation and drainage. Food and Agriculture Organization, Rome

    Google Scholar 

  • Barnes CJ, Jacobson G, Smith GD (1992) The origin of high-nitrate ground waters in the Australian arid zone. J Hydrol 137:181–197. https://doi.org/10.1016/0022-1694(92)90055-Z

    Article  Google Scholar 

  • Benest M (1985) Evolution de la plate-forme de l’Ouest algérien et du Nord-Est marocain au cours du Jurassique supérieur et au début du Crétacé : stratigraphie, milieux de dépôt et dynamique sédimentaire. Docum Lab Geol 95:1–580

    Google Scholar 

  • Burow KR, Nolan BT, Rupert MG, Dubrovsky NM (2010) Nitrate in groundwater of the United States, 1991–2003. J Environ Sci Tech 44(13):4988–4997

    Article  Google Scholar 

  • Capri E, Civita M, Corniello A, Cusimano G, De Maio M, Ducci D, Fait G, Fiorucci A, Hauser S, Pisciotta A, Pranzini G, Trevisan M, Delgado Huertas A, Ferrari F, Frullini R, Nisi B, Offi M, Vaselli O, Vassallo M (2009) Assessment of nitrate contamination risk: theItalian experience. J GeochExplor 102(02):71–86

    Google Scholar 

  • Chen J, Wu H, Qian H (2016) Groundwater nitrate contamination and associated health risk for the rural communities in an agricultural area of Ningxia, northwest China. Expo Health 8:349–359. https://doi.org/10.1007/s12403-016-0208-8

    Article  Google Scholar 

  • Choi WJ, Han JH, Ro HM, Yoo SH, Lee SM (2002) Evaluation of nitrate contamination sources of unconfined groundwater in the North Han River basin of Korea using nitrogen isotope ratios. Geosci J 6:47–55

    Article  Google Scholar 

  • Collignon B (1986) Hydrogéologie appliquée des aquifères karstiques des Monts de Tlemcen (Algérie). University of Avignon, Thesis

    Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Gaillardet J, Dupré B, Louvat P, Allègre CJ (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159:3–30. https://doi.org/10.1016/S0009-2541(99)00031-5

    Article  Google Scholar 

  • Gallardo AH, Tase N (2007) Hydrogeology and geochemical characterization of groundwater in a typical small-scale agricultural area of Japan. J Asian Earth Sci 29:18–28. https://doi.org/10.1016/j.jseaes.2005.12.005

    Article  Google Scholar 

  • Gulis G, Czompolyova M, Cerhan JR (2002) An ecologic study of nitrate in municipal drinking water and cancer incidence in Trnava District, Slovakia. Environ Res 88:182–187

    Article  Google Scholar 

  • Hadji F, Guasmi I, Djabri L (2013) Soil salinity assessment and reclamation. In: Shabbir AS, Mahmoud AA, Faisal KT (eds) Suitability of surface water from mouillah wadi of Algeria for irrigation purposes. Springer, pp 723–735

    Google Scholar 

  • Hallouche B, Hadji F, Marok A, Benaabidate L (2017) Spatial mapping of irrigation groundwater quality of the High Mekerra watershed (Northern Algeria). Arab J Geosci 10:233. https://doi.org/10.1007/s12517-017-3019-8

    Article  Google Scholar 

  • Hamdan A, Dawood A, Naeem D (2018) Assessment study of water quality index (WQI) for Shatt Al-Arab River and its branches Iraq. MATEC Web Conf 162:05005. https://doi.org/10.1051/matecconf/201816205005

    Article  Google Scholar 

  • Hamlat A, Guidoum A (2018) Assessment of groundwater quality in a semiarid region of Northwestern Algeria using water quality index (WQI). Applied Water Science 8:220. https://doi.org/10.1007/s13201-018-0863-y

    Article  Google Scholar 

  • Hamlat A, Guidoum A, Koulala I (2017) Status and trends of water quality in the Tafna catchment: a comparative study using water quality indices. J Water Reuse Desal 7(2):228–245. https://doi.org/10.2166/wrd.2016.155

    Article  Google Scholar 

  • Hammer MJ (1986) Water and waste water technology. John Wiley, New York

    Google Scholar 

  • Han G, Liu CQ (2004) Water geochemistry controlled by carbonate dissolution: a study of the river waters draining karst-dominated terrain, Guizhou Province, China. Chem Geol 204:1–21. https://doi.org/10.1016/j.chemgeo.2003.09.009

    Article  Google Scholar 

  • Hayane SM (1983) Contribution à l’étude géologique et hydrogéologique du bassin versant de l’oued Sikak (Région de Tlemcen). University of Oran, Thesis

    Google Scholar 

  • Islam MA, Rahman MM, Bodrud-Doza M, Muhib MI, Shammi M, Zahid A, Akter Y, Kurasaki M (2018) A study of groundwater irrigation water quality in south-central Bangladesh: a geo-statistical model approach using GIS and multivariate statistics. Acta Geochim 37:193–214. https://doi.org/10.1007/s11631-017-0201-3

    Article  Google Scholar 

  • Jalali M (2009) Geochemistry characterization of groundwater in an agricultural area of Razan, Hamadan Iran. Environ Geol 56:1479–1488. https://doi.org/10.1007/s00254-008-1245-9

    Article  Google Scholar 

  • Jalali M (2011) Hydrogeochemistry of groundwater and its suitability for drinking and agricultural use in Nahavand, Western Iran. Nat Resour Res 20:65–73. https://doi.org/10.1007/s11053-010-9131-z

    Article  Google Scholar 

  • JORA (2011) Journal Officiel de la république Algérienne. Décret exécutif n° 11–125 du 22 mars 2011 relatif à la qualité de l'eau de consommation humaine.

  • Kraiem Z, Zouari K, Chkir N, Agoune A (2014) Geochemical characteristics of arid shallow aquifers in ChottDjerid, south-western Tunisia. J Hydro-Environ Res 8:460–473. https://doi.org/10.1016/j.jher.2013.06.002

    Article  Google Scholar 

  • Li J, Heap AD (2008) A review of spatial interpolation methods for environmental scientists. Geoscience Australia, Australia

    Google Scholar 

  • Liu J, Diamond J (2005) China’s environment in a globalizing world. Nature 435:1179–1186

    Article  Google Scholar 

  • Liu A, Ming J, Ankumah RO (2005) Nitrate contamination in private wells in rural Alabama, United States. Sci Total Environ 346:12–120

    Article  Google Scholar 

  • Low H (1974) Nitroso-compounds: safety and public health. Arch Environ Health 29(5):256–260

    Article  Google Scholar 

  • Madison RJ, Brunett JO (1985) Overview of the occurrence of nitrate in groundwater of the United States, National water summary 1984 hydrologic events, selected water-quality trends, and ground-water resources. U.S Geol Surv Water-Supply Paper 2275:93–105

    Google Scholar 

  • Malamos N, Koutsoyiannis D (2018) Field survey and modelling of irrigation water quality indices in a Mediterranean island catchment: a comparison between spatial interpolation methods. Hydrol Sci J 63:1447–1467. https://doi.org/10.1080/02626667.2018.1508874

    Article  Google Scholar 

  • Mir A, Piri J, Kisi O (2017) Spatial monitoring and zoning water quality of Sistan River in the wet and dry years using GIS and geostatistics. Comp Electr Agric 135:38–50. https://doi.org/10.1016/j.compag.2017.01.022

    Article  Google Scholar 

  • Mueller DK, Helsel DR (1996) Nutrients in the nation’s waters-too much of a good thing? Report, USGS numbered series, circular, 1136. Geological Survey, U.S.

    Google Scholar 

  • Nemčić-Jurec J, Jazbec A (2017) Point source pollution and variability of nitrate concentrations in water from shallow aquifers. Appl Water Sci 7:1337–1348. https://doi.org/10.1007/s13201-015-0369-9

    Article  Google Scholar 

  • Nowak B (1998) Contents and relationship of elements in human hair for a non-industrialised population in Poland. Sci Total Environ 209:59–68. https://doi.org/10.1016/S0048-9697(97)00298-2

    Article  Google Scholar 

  • Panno SV, Kelly WR, Martinsek AT, Hackley KC (2006) Estimating background and threshold nitrate concentrations using probability graphs. Ground Water 44(5):697–709

    Article  Google Scholar 

  • Patel P, Raju NJ, Reddy BCSR, Suresh U, Gossel W, Wycisk P (2016) Geochemical processes and multivariate statistical analysis for the assessment of groundwater quality in the Swarnamukhi River basin, Andhra Pradesh India. Environ Earth Sci 75:611. https://doi.org/10.1007/s12665-015-5108-x

    Article  Google Scholar 

  • Re V, Sacchi E, Kammoun S, Tringali C, Trabelsi R, Zouari K, Daniele S (2017) Integrated socio-hydrogeological approach to tackle nitrate contamination in groundwater resources. The case of Grombalia Basin (Tunisia). Sci Total Environ 593:664–676

    Article  Google Scholar 

  • Rezaei M, Nikbakht M, Shakeri A (2017) Geochemistry and sources of fluoride and nitrate contamination of groundwater in Lar area, south Iran. Environ Sci Pollut Res 24:15471–15487. https://doi.org/10.1007/s11356-017-9108-0

    Article  Google Scholar 

  • Ridder WE, Oehme FW (1974) Nitrates as an environmental, animal, and human hazard. Clin Toxico 7(2):145–159

    Article  Google Scholar 

  • Sahoo PK, Kim K, Powell MA (2016) Managing groundwater nitrate contamination from livestock farms: implication for nitrate management guidelines. C Pollut Repor 2(3):178–187

    Article  Google Scholar 

  • Schaug J, Rambæk JP, Steinnes E, Henry RC (1990) Multivariate analysis of trace element data from moss samples used to monitor atmospheric deposition. Atmos Environ Part a G Top 24A(10):2625–2631

    Article  Google Scholar 

  • Singh CK, Shashtri S, Mukherjee S (2011) Integrating multivariate statistical analysis with GIS for geochemical assessment of groundwater quality in Shiwaliks of Punjab, India. Enviro Earth Sci 62:1387–1405. https://doi.org/10.1007/s12665-010-0625-0

    Article  Google Scholar 

  • Su X, Wang H, Zhang Y (2013) Health risk assessment of nitrate contamination in groundwater: a case study of an agricultural area in Northeast China. Water Resour Manag 27(8):3025–3034

    Article  Google Scholar 

  • Svobodova Z, Lloyd R, Vykusova JMB (1993) Water quality and fish health EIFAC technical paper 54. FAO

    Google Scholar 

  • Tegos A, Malamos N, Koutsoyiannis D (2015) A parsimonious regional parametric evapotranspiration model based on a simplification of the Penman-Monteith formula. J Hydrol 524:708–717. https://doi.org/10.1016/j.jhydrol.2015.03.024

    Article  Google Scholar 

  • Vieux BE (2004) Distributed hydrologic modeling using GIS, 2nd edn. Water science and technology library, Kluwer, Dordrecht

    Google Scholar 

  • Ward MH, Jones RR, Brender JD, De Kok TM, Weyer PJ, Nolan BT, Villanueva CM, Simone G, Van Breda SG (2018) Drinking water nitrate and human health: an updated review. Intern J Environ Res Public Health 15(7):15–57

    Article  Google Scholar 

  • WHO (2017) World health organization. Guidelines for drinking-water quality

    Google Scholar 

  • WHO/SDE/WSH (2003) Chloride in drinking-water background document for development WHO, guidelines for drinking-water quality, 2nd edn. Guidelines for drinking-water quality, Geneva, p 1996

    Google Scholar 

  • Zettam A, Taleb A, Sauvage S, Boithias L, Belaidi N, Sauchez-Pérez J (2017) Modelling and sediment transport in a semi-arid and Anthropized catchment using the SWAT model: the case of the Tafna River (Northwest Algeria). Water 9:216–233. https://doi.org/10.3390/w9030216

    Article  Google Scholar 

  • Zettam A (2018) Transfert des nitrates du bassin versant de la Tafna (Nord-Ouest de l’Algérie) vers la mer Méditerranée. Approche couplant mesures, modélisation et changement d’échelle vers les grands bassins versants Nord africains. Thesis, University of Tlemcen

  • Zoeteman BCJ (1980) Sensory assessment of water quality. Pergamon Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Marok.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yebdri, L., Hadji, F., Harek, Y. et al. Quality assessment of water used for human consumption and irrigation purpose in parts of Tafna watershed (NW Algeria). Environ Earth Sci 80, 502 (2021). https://doi.org/10.1007/s12665-021-09805-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-021-09805-1

Keywords

Navigation