[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Pediococcus pentosaceus LAB6- and Lactiplantibacillus plantarum LAB12-Derived Cell Free Supernatant Inhibited RhoA Activation and Reduced Amyloid-Β In Vitro

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is characterized by aggregation of amyloid beta (Aβ) plaque. RhoA may serve as a potential target for prevention against AD given its role in the amyloidogenic pathway. The recent emergence of the gut-brain axis has linked lactic acid bacteria (LAB) to neuroprotection against AD. This study assessed the importance of RhoA inhibition in mediating the neuroprotective potential of LAB. To this end, de Man, Rogosa and Sharpe (MRS) broth fermented by lactobacilli or pediococci were tested against SK-N-SH (a human neuroblastoma cell line) in the presence of RhoA activator II for 24 h after which the RhoA activity was measured using the G-LISA Kit. Fluorescence staining of f-actin stress fibres was performed to validate RhoA inhibition. SK-N-SH was transfected with plasmid expressing amyloid precursor protein (APP) gene. The Aβ concentration in transfected cells exposed to LAB-derived cell free supernatant (CFS) in the presence of RhoA activator II was measured using the ELISA kit. Furthermore, this study measured organic acids in LAB-derived CFS using the gas chromatography. It was found that LAB-derived CFS yielded strain-dependent inhibition of RhoA, with LAB6- and LAB12-derived CFS being the most potent Pediococcal- and Lactiplantibacillus-based RhoA inhibitor, respectively. Lesser stress fibres were formed under treatment with LAB-derived CFS. The LAB-derived CFS also significantly inhibited Aβ in SK-N-SH transfected with APP gene in the presence of RhoA activator II. The LAB-derived CFS was presented with increased lactic acid, acetic acid, butyric acid and propionic acid. The present findings warrant in-depth study using animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that supports the findings of this study is available upon request from the corresponding author.

Abbreviations

AChE:

Acetylcholinesterase

ATP:

Adenosine triphosphate

AD:

Alzheimer’s disease

Aβ:

Amyloid beta

APP:

Amyloid precursor protein

ANOVA:

One-way analysis of variance

ATCC:

American Type Culture Collection

BSA:

Bovine serum albumin

CFS:

Cell free supernatant

CNS:

Central nervous system

DAPI:

4′,6-Diamidino-2-phenylindole

db-cAMP:

Di-butyric cAMP

DPPH:

1,1-Diphenyl-2-picrylhydrazyl

FBS:

Foetal bovine serum

FDA:

Food and Drug Administration

FID:

Flame ionization detector

GC:

Gas chromatography

HRP:

Horseradish peroxidase conjugate

HSTC:

Highest sub-toxic concentration

IC:

Inhibitory concentration

LAB:

Lactic acid bacteria

LPS:

Lipopolysaccharide

MEM:

Eagle’s Minimum Essential Medium

MRS:

De Man, Rogosa and Sharpe

NMDA:

N-methyl-D-aspartate

NSAID:

Non-steroidal anti-inflammatory drugs

PBS:

Phosphate-buffered saline

PCR:

Polymerase chain reaction

ROCK:

Rho-associated protein kinase

SCFA:

Short-chain fatty acids

SRB:

Sulforhodamine B

TBE:

Tris-borate-EDTA

TCA:

Tricarboxylic acid

TRITC:

Tetramethylrhodamine

VFA:

Volatile fatty acid

References

  1. Knowles TP, Vendruscolo M, Dobson CM (2014) The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol 15(6):384–396

    Article  CAS  PubMed  Google Scholar 

  2. Association A (2017) 2017 Alzheimer’s disease facts and figures. Alzheimers Dement 13(4):325–373

    Article  Google Scholar 

  3. Alzheimer's Disease International (2015) World Alzheimer Report 2015, in the global impact of dementia: an analysis of prevalence, incidence, cost and trends. [cited 2018 3rd January]; Available from: https://www.alz.co.uk/research/world-report-2015

  4. Breijyeh Z, Karaman R (2020) Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules 25(24):5789. https://doi.org/10.3390/molecules25245789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Karthivashan G, Ganesan P, Park S-Y, Kim J-S, Choi D-K (2018) Therapeutic strategies and nano-drug delivery applications in management of ageing Alzheimer’s disease. Drug Deliv 25(1):307–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schneider LS, Insel PS, Weiner MW (2011) Treatment with cholinesterase inhibitors and memantine of patients in the Alzheimer’s disease Neuroimaging Initiative. Arch Neurol 68(1):58–66

    Article  PubMed  PubMed Central  Google Scholar 

  7. Burgener S, Buettner L, Buckwalter KC, Beattie E, Bossen A, Fick D, Fitzsimmons S, Kolanowski A, Richeson N, Rose K (2008) Evidence supporting nutritional interventions for persons in early stage Alzheimer’s disease (AD). J Nutr Health Aging 12(1):18–21

    Article  CAS  PubMed  Google Scholar 

  8. Mayer EA, Tillisch K, Gupta A (2015) Gut/brain axis and the microbiota. J Clin Invest 125(3):926–938

    Article  PubMed  PubMed Central  Google Scholar 

  9. Brasca M, Hogenboom JA, Morandi S, Rosi V, D’Incecco P, Silvetti T, Pellegrino L (2016) Proteolytic activity and production of γ-aminobutyric acid by streptococcus thermophilus cultivated in microfiltered pasteurized milk. J Agric Food Chem 64(45):8604–8614

    Article  CAS  PubMed  Google Scholar 

  10. Yeon S-W, You YS, Kwon H-S, Yang EH, Ryu J-S, Kang BH, Kang J-H (2010) Fermented milk of Lactobacillus helveticus IDCC3801 reduces beta-amyloid and attenuates memory deficit. J Funct Foods 2(2):143–152

    Article  CAS  Google Scholar 

  11. Yu L, Zhai Q, Tian F, Liu X, Wang G, Zhao J, Zhang H, Narbad A, Chen W (2017) Lactobacillus plantarum CCFM639 can prevent aluminium-induced neural injuries and abnormal behaviour in mice. J Funct Foods 30:142–150

    Article  CAS  Google Scholar 

  12. Kalavathy R, Nor Zaihana AR, Sieo CC, Nur Jahan S, Norhani A, Ho YW (2012) Probiotic potential of lactic acid bacteria from fermented Malaysian food or milk products. Int J Food Sci 47(10):2175–2183

    Article  Google Scholar 

  13. Fakri EM, Lim S, Musa N, Hasan MH, Adam A, Ramasamy K (2016) Lactobacillus fermentum LAB 9-fermented soymilk with enriched isoflavones and antioxidants improved memory in vivo. Sains Malays 45(9):1289–1297

    CAS  Google Scholar 

  14. Lim FT, Lim SM, Ramasamy K (2017) Cholesterol lowering by Pediococcus acidilactici LAB4 and Lactobacillus plantarum LAB12 in adult zebrafish is associated with improved memory and involves an interplay between npc1l1 and abca1. Food Funct 8(8):2817–2828

    Article  CAS  PubMed  Google Scholar 

  15. Lefort R (2015) Reversing synapse loss in Alzheimer’s disease: Rho-guanosine triphosphatases and insights from other brain disorders. Neurotherapeutics 12(1):19–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aguilar BJ, Zhu Y, Lu Q (2017) Rho GTPases as therapeutic targets in Alzheimer’s disease. Alzheimers Res Ther 9(1):97. https://doi.org/10.1186/s13195-017-0320-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chacon PJ, Garcia-Mejias R, Rodriguez-Tebar A (2011) Inhibition of RhoA GTPase and the subsequent activation of PTP1B protects cultured hippocampal neurons against amyloid β toxicity. Mol Neurodegener 6:14. https://doi.org/10.1186/1750-1326-6-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schmidt SI, Blaabjerg M, Freude K, Meyer M (2022) RhoA signaling in neurodegenerative diseases. Cells 11(9):1520. https://doi.org/10.3390/cells11091520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kavvadia M, De Santis GL, Alwardat NAAA, Bigioni G, Zeppieri C, Cascapera S, De Lorenzo A (2017) Psychobiotics as integrative therapy for neuropsychiatric disorders with special emphasis on the microbiota-gut-brain axis. Biomed Prev 2(111). https://doi.org/10.19252/00000006F

  20. Ramasamy K, Abdul Rahman NZ, Sieo CC, Alitheen NJ, Abdullah N, Ho YW (2012) Probiotic potential of lactic acid bacteria from fermented Malaysian food or milk products. Int J Food Sci 47(10):2175–2183

    Article  CAS  Google Scholar 

  21. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82(13):1107–1112

    Article  CAS  PubMed  Google Scholar 

  22. Anonymous (2012) Precision red advanced protein assay. 1st November 2017: http://www.cytoskeleton.com/pdf-storage/datasheets/adv02.pdf Accessed 1 Nov 2017

  23. Keely PJ, Conklin MW, Gehler S, Ponik SM, Provenzano PP (2007) Investigating integrin regulation and signaling events in three-dimensional systems. Methods Enzymol 426:27–45

    Article  CAS  PubMed  Google Scholar 

  24. Kranenburg O, Poland M, van Horck FP, Drechsel D, Hall A, Moolenaar WH (1999) Activation of RhoA by lysophosphatidic acid and Gα12/13 subunits in neuronal cells: induction of neurite retraction. Mol Biol Cell 10(6):1851–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bijman MNA, van Nieuw Amerongen GP, Laurens N, van Hinsbergh VWM, Boven E (2006) Microtubule-targeting agents inhibit angiogenesis at subtoxic concentrations, a process associated with inhibition of Rac1 and Cdc42 activity and changes in the endothelial cytoskeleton. Mol Cancer Ther 5(9):2348–2357

    Article  CAS  PubMed  Google Scholar 

  26. Canal-Raffin M, L’azou B, Martinez B, Sellier E, Fawaz F, Robinson P, Ohayon-Courtès C, Baldi I, Cambar J, Molimard M, Moore N, Brochard P (2007) Physicochemical characteristics and bronchial epithelial cell cytotoxicity of Folpan 80 Wg® and Myco 500®, two commercial forms of folpet. Part Fibre Toxicol 4:8. https://doi.org/10.1186/1743-8977-4-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Aghajanian A, Wittchen ES, Campbell SL, Burridge K (2009) Direct activation of RhoA by reactive oxygen species requires a redox-sensitive motif. PLoS One 4(11):e8045. https://doi.org/10.1371/journal.pone.0008045

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sander EE, ten Klooster JP, van Delft S, van der Kammen RA, Collard JG (1999) Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J Cell Biol 147(5):1009–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Beltran S, Munoz-Bergmann CA, Elola-Lopez A, Quintana J, Segovia C, Trombert AN (2016) The expression of heterologous MAM-7 in Lactobacillus rhamnosus reduces its intrinsic capacity to inhibit colonization of pathogen Vibrio parahaemolyticus in vitro. Biol Res 49(1):2. https://doi.org/10.1186/s40659-015-0064-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Helmy YA, Kassem II, Kumar A, Rajashekara G (2017) In vitro evaluation of the impact of the probiotic E. coli Nissle 1917 on Campylobacter jejuni’s invasion and intracellular survival in human colonic cells. Front Microbiol 8:1588. https://doi.org/10.3389/fmicb.2017.01588

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gebbink MF, Kranenburg O, Poland M, van Horck FP, Houssa B, Moolenaar WH (1997) Identification of a novel, putative Rho-specific GDP/GTP exchange factor and a RhoA-binding protein: control of neuronal morphology. J Cell Biol 137(7):1603–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dong J-M, Leung T, Manser E, Lim L (1998) cAMP-induced morphological changes are counteracted by the activated RhoA small GTPase and the Rho kinase ROKα. J Biol Chem 273(35):22554–22562

    Article  CAS  PubMed  Google Scholar 

  33. Wang PL, Niidome T, Akaike A, Kihara T, Sugimoto H (2009) Rac1 inhibition negatively regulates transcriptional activity of the amyloid precursor protein gene. J Neurosci Res 87(9):2105–2114

    Article  CAS  PubMed  Google Scholar 

  34. Zhou, Su Y, Li B, Liu F, Ryder JW, Wu X, Gonzalez-DeWhitt PA, Gelfanova V, Hale JE, May PC (2003) Nonsteroidal anti-inflammatory drugs can lower amyloidogenic Aß42 by inhibiting Rho. Science 302(5648):1215–1217

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Castro-Alvarez JF, Gutierrez-Vargas J, Darnaudéry M, Cardona-Gómez GP (2011) ROCK inhibition prevents tau hyperphosphorylation and p25/CDK5 increase after global cerebral ischemia. Behav Neurosci 125(3):465–472

    Article  CAS  PubMed  Google Scholar 

  36. Herskowitz JH, Feng Y, Mattheyses AL, Hales CM, Higginbotham LA, Duong DM, Montine TJ, Troncoso JC, Thambisetty M, Seyfried NT (2013) Pharmacologic inhibition of ROCK2 suppresses amyloid-β production in an Alzheimer’s disease mouse model. J Neurosci 33(49):19086–19098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. De Vuyst L, Leroy F (2007) Bacteriocins from lactic acid bacteria: production, purification, and food applications. J Mol Microbiol Biotechnol 13(4):194–199

    PubMed  Google Scholar 

  38. Leroy F, De Vuyst L (2004) Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Technol 15(2):67–78

    Article  CAS  Google Scholar 

  39. Lee J, Yang W, Hostetler A, Schultz N, Suckow MA, Stewart KL, Kim DD, Kim HS (2016) Characterization of the anti-inflammatory Lactobacillus reuteri BM36301 and its probiotic benefits on aged mice. BMC Microbiol 16(1):69. https://doi.org/10.1186/s12866-016-0686-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Medjekal S, Ghadbane M, Bodas R, Bousseboua H, López S (2018) Volatile fatty acids and methane production from browse species of Algerian arid and semi-arid areas. J Appl Anim Res 46(1):44–49

    Article  CAS  Google Scholar 

  41. Ayudthaya SPN, Weijer AH, Gelder AH, Stams AJ, Vos WM, Plugge CM (2018) Organic acid production from potato starch waste fermentation by rumen microbial communities from Dutch and Thai dairy cows. Biotechnol Biofuels 11(1):13. https://doi.org/10.1186/s13068-018-1012-4

    Article  CAS  Google Scholar 

  42. Filiano AJ, Gadani SP, Kipnis J (2015) Interactions of innate and adaptive immunity in brain development and function. Brain Res 1617:18–27

    Article  CAS  PubMed  Google Scholar 

  43. Stilling RM, van de Wouw M, Clarke G, Stanton C, Dinan TG, Cryan JF (2016) The neuropharmacology of butyrate: the bread and butter of the microbiota-gut-brain axis? Neurochem Int 99:110–132

    Article  CAS  PubMed  Google Scholar 

  44. Wächtershäuser A, Stein J (2000) Rationale for the luminal provision of butyrate in intestinal diseases. Eur J Nutr 39(4):164–171

    Article  PubMed  Google Scholar 

  45. Huuskonen J, Suuronen T, Nuutinen T, Kyrylenko S, Salminen A (2004) Regulation of microglial inflammatory response by sodium butyrate and short-chain fatty acids. Br J Pharmacol 141(5):874–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nankova BB, Agarwal R, MacFabe DF, La Gamma EF (2014) Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells-possible relevance to autism spectrum disorders. PLoS One 9(8):e103740. https://doi.org/10.1371/journal.pone.0103740

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  47. Edwards C, Canfield J, Copes N, Rehan M, Lipps D, Bradshaw PC (2014) D-beta-hydroxybutyrate extends lifespan in C. elegans. Aging 6(8):621–644

    Article  PubMed  PubMed Central  Google Scholar 

  48. Nastasi C, Candela M, Bonefeld CM, Geisler C, Hansen M, Krejsgaard T, Biagi E, Andersen MH, Brigidi P, Ødum N (2015) The effect of short-chain fatty acids on human monocyte-derived dendritic cells. Sci Rep 5:16148. https://doi.org/10.1038/srep16148

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jeon CY, Moon MY, Kim JH, Kim HJ, Kim JG, Li Y, Jin JK, Kim PH, Kim HC, Meier KE (2012) Control of neurite outgrowth by RhoA inactivation. J Neurochem 120(5):684–698

    Article  CAS  PubMed  Google Scholar 

  50. Schurr A (2006) Lactate: the ultimate cerebral oxidative energy substrate? J Cereb Blood Flow 26(1):142–152

    Article  CAS  Google Scholar 

  51. Xiang Y, Xu G, Weigel-Van Aken KA (2010) Lactic acid induces aberrant amyloid precursor protein processing by promoting its interaction with endoplasmic reticulum chaperone proteins. PLoS ONE 5(11):e13820. https://doi.org/10.1371/journal.pone.0013820

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Klawitter J, Shokati T, Moll V, Christians U, Klawitter J (2010) Effects of lovastatin on breast cancer cells: a proteo-metabonomic study. Breast Cancer Res 12(2):R16. https://doi.org/10.1186/bcr2485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Indira M, Venkateswarulu TC, Peele KA, Bobby MN, Krupanidhi S (2019) Bioactive molecules of probiotic bacteria and their mechanism of action: a review. 3 Biotech 9(8):306. https://doi.org/10.1007/s13205-019-1841-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Scillato M, Spitale A, Mongelli G, Privitera GF, Mangano K, Cianci A, Stefani S, Santagati M (2021) Antimicrobial properties of Lactobacillus cell-free supernatants against multidrug-resistant urogenital pathogens. MicrobiologyOpen 10(2):e1173. https://doi.org/10.1002/mbo3.1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shang Y-Y, Ma Y-J, Zhang L, Wang L-J, Wu X-F, Liu X-P (2018) Flavonoids extracted from leaves of Diospyros kaki regulates RhoA activity to rescue synapse loss and reverse memory impairment in APP/PS1 mice. NeuroReport 29(7):564–569

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The present study acknowledges receipt of financial support from the Ministry of Higher Education Malaysia under the Long-Term Research Grant Scheme [600-RMC/LRGS 5/3 (002/2019)].

Author information

Authors and Affiliations

Authors

Contributions

Kalavathy Ramasamy and Siong Meng Lim were involved in conceptualisation, project administration and supervision. Ramli Muhammad Zaki performed the majority of the experiments, analysed the data and wrote the original draft. Nor Amalina Ahmad Alwi and Rosmadi Mohd Yusoff constructed the pcDNA 3.1-APP plasmid and validated the APP gene. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Siong Meng Lim.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1398 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaki, R.M., Ramasamy, K., Ahmad Alwi, N. et al. Pediococcus pentosaceus LAB6- and Lactiplantibacillus plantarum LAB12-Derived Cell Free Supernatant Inhibited RhoA Activation and Reduced Amyloid-Β In Vitro. Probiotics & Antimicro. Prot. 16, 62–75 (2024). https://doi.org/10.1007/s12602-022-10009-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-022-10009-7

Keywords

Navigation