[go: up one dir, main page]

Skip to main content
Log in

Preparation of vanadium-based electrode materials and their research progress in solid-state flexible supercapacitors

  • Mini Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Solid-state flexible supercapacitors (SCs) have many advantages of high specific capacitance, excellent flexibility, fast charging and discharging, high power density, environmental friendliness, high safety, light weight, ductility, and long cycle stability. They are the ideal choice for the development of flexible energy storage technology in the future, and provide a good prospect for energy storage applications. At present, solid-state flexible SCs are widely used for portable electronic equipment and wearable energy storage equipment, the research of them has become the focus of a growing number of researchers. Electrode material is the key part of SCs and always determines the electrochemical performance of SCs. It has been a hotspot and focus of research. Vanadium-based compounds are considered to be a promising electrode material for SCs because of variable valence, open structure, high theoretical capacity, and low price. Therefore, this study first gives an overview of solid-state flexible SCs, then reviews the current research status of vanadium-based electrode materials in solid-state flexible SCs, and proposes some strategies to solve some problems of vanadium-based electrode materials.

Graphical abstract

摘要

固态柔性超级电容器具有高比电容、优良的柔性、快速充放电、高功率密度、环境友好、高安全性、重量轻、延展性和长循环稳定性等优点。它们是未来发展柔性储能技术的理想选择, 并为储能应用提供了良好的前景。目前, 固态柔性超级电容器被广泛应用于便携式电子设备和可穿戴式储能设备, 有关研究也获得了越来越多研究人员的关注。电极材料作为固态柔性超级电容器的关键部分, 决定着固态柔性超级电容器的电化学性能, 一直是研究的热点和重点。钒基化合物因其多价态、开放结构、高理论容量和价格低廉而被认为是一种非常有前途的超级电容器电极材料。因此, 本文首先对固态柔性超级电容器进行了概述, 然后回顾了钒基电极材料在固态柔性超级电容器中的研究现状, 并提出了一些解决钒基电极材料问题的策略。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from Ref. [45]. Copyright 2019, Elsevier. b Schematic diagram of different types of pseudocapacitor energy storage mechanisms. Reproduced with permission from Ref. [46]. Copyright 2017, John Wiley and Sons

Fig. 3

Reproduced with permission from Ref. [65]. Copyright 2017, John Wiley and Sons

Fig. 4

Reproduced with permission from Ref. [81]. Copyright 2021, Elsevier

Fig. 5

Reproduced with permission from Ref. [92]. Copyright 2019, Springer Nature

Fig. 6

Reproduced with permission from Ref. [110]. Copyright 2020, Elsevier

Fig. 7

Reproduced with permission from Ref. [111]. Copyright 2019, Springer Nature

Fig. 8

Reproduced with permission from Ref. [117]. Copyright 2017, Royal Society of Chemistry

Fig. 9

Reproduced with permission from Ref. [120]. Copyright 2022, American Chemical Society

Fig. 10

Reproduced with permission from Ref. [138]. Copyright 2021, Elsevier

Similar content being viewed by others

References

  1. Tang TY, Zhang LG, Guo ZF, Gu XX. Development of cathode and anode materials in lithium sulfur batteries. Chin J Rare Met. 2022;46(7):954. https://doi.org/10.13373/j.cnki.cjrm.XY21070001.

  2. Banerjee J, Dutta K. An overview on the use of metal vanadium oxides and vanadates in supercapacitors and rechargeable batteries. Int J Energy Res. 2022;46(4):3983. https://doi.org/10.1002/er.7492.

    Article  CAS  Google Scholar 

  3. Majumdar D, Mandal M, Bhattacharya SK. V2O5 and its carbon-based nanocomposites for supercapacitor applications. ChemElectroChem. 2019;6(6):1623. https://doi.org/10.1002/celc.201801761.

    Article  CAS  Google Scholar 

  4. Wang YF, Leung DYC, Xuan J, Wang HZ. A review on unitized regenerative fuel cell technologies, part B: Unitized regenerative alkaline fuel cell, solid oxide fuel cell, and microfluidic fuel cell. Renew Sust Energy Rev. 2017;75:775. https://doi.org/10.1016/j.rser.2016.11.054.

    Article  CAS  Google Scholar 

  5. Li LJ, Fleetwood J, Hawley WB, Kays W. From materials to cell: state-of-the-art and prospective technologies for lithium-ion battery electrode processing. Chem Rev. 2022;122(1):903. https://doi.org/10.1021/acs.chemrev.1c00565.

    Article  CAS  Google Scholar 

  6. Chen RR, Liu YT, Peng FZ. A solid state variable capacitor with minimum capacitor. IEEE Trans Power Electron. 2017;32(7):5035. https://doi.org/10.1109/tpel.2016.2606582.

    Article  CAS  Google Scholar 

  7. Reece R, Lekakou C, Smith PA. A high-performance structural supercapacitor. ACS Appl Mater Interfaces. 2020;12(23):25683. https://doi.org/10.1021/acsami.9b23427.

    Article  CAS  Google Scholar 

  8. Sharma P, Kumar V. Current technology of supercapacitors: a review. J Electron Mater. 2020;49(6):3520. https://doi.org/10.1007/s11664-020-07992-4.

    Article  CAS  Google Scholar 

  9. Zhao C, Jia XT, Shu KW, Yu CC, Wallace GG, Wang CY. Conducting polymer composites for unconventional solid-state supercapacitors. J Mater Chem A. 2020;8(9):4677. https://doi.org/10.1039/c9ta13432h.

    Article  CAS  Google Scholar 

  10. Zhang YZ, Wang Y, Cheng T, Yao LQ, Li XC, Lai WY, Huang W. Printed supercapacitors: materials, printing and applications. Chem Soc Rev. 2019;48(12):3229. https://doi.org/10.1039/c7cs00819h.

    Article  CAS  Google Scholar 

  11. Atta MM, Fahim RA. Flexible and wearable supercapacitors: a short review. J Energy Storage. 2021;44:103475. https://doi.org/10.1016/j.est.2021.103475.

  12. Keum K, Kim JW, Hong SY, Son JG, Lee SS, Ha JS. Flexible/stretchable supercapacitors with novel functionality for wearable electronics. Adv Mater. 2020;32(51):e2002180. https://doi.org/10.1002/adma.202002180.

  13. Liu S, Wei L, Wang H. Review on reliability of supercapacitors in energy storage applications. Appl Energy. 2020;278:115436. https://doi.org/10.1016/j.apenergy.2020.115436.

  14. Hamidouche F, Sanad MMS, Ghebache Z, Boudieb N. Effect of polymerization conditions on the physicochemical and electrochemical properties of SnO2/polypyrrole composites for supercapacitor applications. J Mol Struct. 2022;1251:131964. https://doi.org/10.1016/j.molstruc.2021.131964.

  15. Meng QF, Cai KF, Chen YX, Chen LD. Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy. 2017;36:268. https://doi.org/10.1016/j.nanoen.2017.04.040.

    Article  CAS  Google Scholar 

  16. Yang YX, Ge KK, Rehman SU, Bi H. Nanocarbon-based electrode materials applied for supercapacitors. Rare Met. 2022;41(12):3957. https://doi.org/10.1007/s12598-022-02091-1.

    Article  CAS  Google Scholar 

  17. Li QL, Cao JX, Zhang Q. Tuning mechanism of reduced-graphene oxide content on electrochemical performance of MXene/reduced graphene oxide-based supercapacitors. Chin J of Rare Met. 2022;46(9):1133. https://doi.org/10.13373/j.cnki.cjrm.XY21040042.

  18. Liang YX, Luo XG, Weng W, Hu ZX, Zhang Y, Xu WT, Bi ZJ, Zhu MF. Activated carbon nanotube fiber fabric as a high-performance flexible electrode for solid-state supercapacitors. ACS Appl Mater Interfaces. 2021;13(24):28433. https://doi.org/10.1021/acsami.1c02758.

    Article  CAS  Google Scholar 

  19. Yang YX, Ge KK, ur Rehman S, Bi H. Nanocarbon-based electrode materials applied for supercapacitors. Rare Met. 2022;41(12):3957. https://doi.org/10.1007/s12598-022-02091-1.

  20. Lyu L, Hooch Antink W, Kim YS, Kim CW, Hyeon T, Piao YZ. Recent development of flexible and stretchable supercapacitors using transition metal compounds as electrode materials. Small. 2021;17(36):e2101974. https://doi.org/10.1002/smll.202101974.

  21. Soram BS, Dai JY, Thangjam IS, Kim NH, Lee JH. One-step electrodeposited MoS2@Ni-mesh electrode for flexible and transparent asymmetric solid-state supercapacitors. J Mater Chem A. 2020;8(45):24040. https://doi.org/10.1039/d0ta07764j.

    Article  CAS  Google Scholar 

  22. Zhang YN, Su CY, Chen JL, Huang WH, Lou R. Recent progress of transition metal-based biomass-derived carbon composites for supercapacitor. Rare Met. 2022;42(3):769. https://doi.org/10.1007/s12598-022-02142-7.

  23. Huang Y, Li HF, Wang ZF, Zhu MS, Pei ZX, Xue Q, Huang Y, Zhi CY. Nanostructured polypyrrole as a flexible electrode material of supercapacitor. Nano Energy. 2016;22:422. https://doi.org/10.1016/j.nanoen.2016.02.047.

    Article  CAS  Google Scholar 

  24. Zhao ZY, Xia KQ, Hou Y, Zhang QH, Ye ZZ, Lu JG. Designing flexible, smart and self-sustainable supercapacitors for portable/wearable electronics: from conductive polymers. Chem Soc Rev. 2021;50(22):12702. https://doi.org/10.1039/d1cs00800e.

    Article  CAS  Google Scholar 

  25. Wang ZF, Zhu MS, Pei ZX, Xue Q, Li HF, Huang Y, Zhi CY. Polymers for supercapacitors: Boosting the development of the flexible and wearable energy storage. Mater Sci Eng R Rep. 2020;139:100520. https://doi.org/10.1016/j.mser.2019.100520.

  26. Yu F, Pang L, Wang HX. Preparation of mulberry-like RuO2 electrode material for supercapacitors. Rare Met. 2020;40(2):440. https://doi.org/10.1007/s12598-020-01561-8.

    Article  CAS  Google Scholar 

  27. Guo Y, Zou XY, Wei YX, Shu L, Li AY, Zhang JW, Wang RR. Synthesis of organic hybrid ruthenium oxide nanoparticles for high-performance supercapacitors. Electrochim Acta. 2023;443:141938. https://doi.org/10.1016/j.electacta.2023.141938.

  28. Liang RB, Du YQ, Xiao P, Cheng JY, Yuan SJ, Chen YL, Yuan J, Chen JW. Transition metal oxide electrode materials for supercapacitors: a review of recent developments. Nanomaterials. 2021;11(5):1248. https://doi.org/10.3390/nano11051248.

    Article  CAS  Google Scholar 

  29. Zheng K, Zeng YX, Liu S, Zeng CH, Tong YX, Zheng ZK, Zhu TS, Lu XH. Valence and surface modulated vanadium oxide nanowires as new high-energy and durable negative electrode for flexible asymmetric supercapacitors. Energy Storage Mater. 2019;22:410. https://doi.org/10.1016/j.ensm.2019.02.012.

    Article  Google Scholar 

  30. Yao GM, Zhang N, Zhang Y, Zhou TK. Nanostructured transition metal vanadates as electrodes for pseudo-supercapacitors: a review. J Nanopart Res. 2021;23(2):57. https://doi.org/10.1007/s11051-021-05158-9.

    Article  CAS  Google Scholar 

  31. Qin HZ, Liang SF, Chen LY, Li Y, Luo ZY, Chen SW. Recent advances in vanadium-based nanomaterials and their composites for supercapacitors. Sustain Energy Fuels. 2020;4(10):4902. https://doi.org/10.1039/d0se00897d.

    Article  CAS  Google Scholar 

  32. Lu XH, Yu MH, Wang GM, Tong YX, Li Y. Flexible solid-state supercapacitors: design, fabrication and applications. Energy Environ Sci. 2014;7(7):2160. https://doi.org/10.1039/c4ee00960f.

    Article  Google Scholar 

  33. Zhang Y, Mei HX, Cao Y, Yan XH, Yan J, Gao HL, Luo HW, Wang SW, Jia XD, Kachalova L, Yang J, Xue SC, Zhou CG, Wang LX, Gui YH. Recent advances and challenges of electrode materials for flexible supercapacitors. Coord Chem Rev. 2021;438:213910. https://doi.org/10.1016/j.ccr.2021.213910.

  34. Muralee Gopi CVV, Vinodh R, Sambasivam S, Obaidat IM, Kim HJ. Recent progress of advanced energy storage materials for flexible and wearable supercapacitor: from design and development to applications. J Energy Storage. 2020;27:101035. https://doi.org/10.1016/j.est.2019.101035.

  35. Kim YK, Shin KY. Dopamine-assisted chemical vapour deposition of polypyrrole on graphene for flexible supercapacitor. Appl Surf Sci. 2021;547:149141. https://doi.org/10.1016/j.apsusc.2021.149141.

  36. Zhang HB, Lv Y, Wu XY, Guo JX, Jia DZ. Electrodeposition synthesis of high performance MoO3-x@Ni-Co layered double hydroxide hierarchical nanorod arrays for flexible solid-state supercapacitors. Chem Eng J. 2022;431:133233. https://doi.org/10.1016/j.cej.2021.133233.

  37. Zhang JX, Hector AL, Soulé S, Zhang QH, Zhao X. Effects of ammonolysis and of sol-gel titanium oxide nitride coating on carbon fibres for use in flexible supercapacitors. J Mater Chem A. 2018;6(12):5208. https://doi.org/10.1039/c7ta11142h.

    Article  CAS  Google Scholar 

  38. Lu C, Chen X. Latest advances in flexible symmetric supercapacitors: from material engineering to wearable applications. Acc Chem Res. 2020;53(8):1468. https://doi.org/10.1021/acs.accounts.0c00205.

    Article  CAS  Google Scholar 

  39. Liang J, Feng Y, Liu L, Li SQ, Jiang CZ, Wu W. All-printed solid-state supercapacitors with versatile shapes and superior flexibility for wearable energy storage. J Mater Chem A. 2019;7(26):15960. https://doi.org/10.1039/c9ta03513c.

    Article  CAS  Google Scholar 

  40. Liu L, Feng Y, Wu W. Recent progress in printed flexible solid-state supercapacitors for portable and wearable energy storage. J Power Sources. 2019;410–411:69. https://doi.org/10.1016/j.jpowsour.2018.11.012.

    Article  CAS  Google Scholar 

  41. Zhang XM. Preparation and Performance Evaluation of Flexible Supercapacitors. Beijing: North China Electric Power University. 2021;1. https://doi.org/10.27139/d.cnki.ghbdu.2021.000212.

  42. Li SS, Yang QL, Zhang XH, Xu HT, Zhou YN, Zhang JM, Yuan X. Review on energy storage mechanism of supercapacitor. Journal of Lanzhou University of Arts and Science (Nature Sciences). 2021;35(5):46. https://doi.org/10.13804/j.cnki.2095-6991.2021.05.009.

  43. Wu QH, He TQ, Zhang YK, Zhang JL, Wang ZJ, Liu Y, Zhao L, Wu YZ, Ran F. Cyclic stability of supercapacitors: materials, energy storage mechanism, test methods, and device. J Mater Chem A. 2021;9(43):24094. https://doi.org/10.1039/d1ta06815f.

    Article  CAS  Google Scholar 

  44. Wen JF, Xu BG, Gao YY, Li MQ, Fu H. Wearable technologies enable high-performance textile supercapacitors with flexible, breathable and wearable characteristics for future energy storage. Energy Storage Mater. 2021;37:94. https://doi.org/10.1016/j.ensm.2021.02.002.

    Article  Google Scholar 

  45. Zhang LY, Shi DW, Liu T, Jaroniec M, Yu JG. Nickel-based materials for supercapacitors Mater Today. 2019;25:35. https://doi.org/10.1016/j.mattod.2018.11.002.

    Article  CAS  Google Scholar 

  46. Liu JL, Wang J, Xu CH, Jiang H, Li CZ, Zhang LL, Lin JY, Shen ZX. Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv Sci (Weinh). 2018;5(1):1700322. https://doi.org/10.1002/advs.201700322.

    Article  CAS  Google Scholar 

  47. Ye XK, Zhou QL, Wan ZQ, Jia CY. Research progress in electrode materials and devices of flexible supercapacitors. Chemistry. 2017;80(1):10. https://doi.org/10.14159/j.cnki.0441-3776.2017.01.002.

  48. Chodankar NR, Pham HD, Nanjundan AK, Fernando JFS, Jayaramulu K, Golberg D, Han YK, Dubal DP. True meaning of pseudocapacitors and their performance metrics: asymmetric versus hybrid supercapacitors. Small. 2020;16(37):2002806. https://doi.org/10.1002/smll.202002806.

    Article  CAS  Google Scholar 

  49. Zhang XY, Jiang CZ, Liang J, Wu W. Electrode materials and device architecture strategies for flexible supercapacitors in wearable energy storage. J Mater Chem A. 2021;9(13):8099. https://doi.org/10.1039/d0ta12299h.

    Article  CAS  Google Scholar 

  50. Liu WN. Preparation of vanadium-based electrode materials for supercapacitors and its electrochemical performance. Wuhan: Jianghan University. 2021;4. https://doi.org/10.27800/d.cnki.gjhdx.2021.000006.

  51. Wu ZM. Preparation and performance of all-solid flexible supercapacitors based on ionic liquids/polymers. Taiyuan: Taiyuan University of Technology. 2021;3. https://doi.org/10.27352/d.cnki.gylgu.2021.000087.

  52. Zhang YZ, Wang Y, Cheng T, Lai WY, Pang H, Huang W. Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage. Chem Soc Rev. 2015;44(15):5181. https://doi.org/10.1039/c5cs00174a.

    Article  CAS  Google Scholar 

  53. Hu BB. The study on the vanadium-based electrode materials for supercapacitors. Chongqing: Chongqing University. 2020;5. https://doi.org/10.27670/d.cnki.gcqdu.2020.000119.

  54. Zhang YN, Su CY, Chen JL, Huang WH, Lou R. Recent progress of transition metal-based biomass-derived carbon composites for supercapacitor. Rare Met. 2022;42(3):769. https://doi.org/10.1007/s12598-022-02142-7.

    Article  CAS  Google Scholar 

  55. Guo JH, Yu YR, Sun LY, Zhang ZH, Zhao YJ, Chai RJ, Shi KQ. Bio-inspired multicomponent carbon nanotube microfibers from microfluidics for supercapacitor. Chem Eng J. 2020;397:125517. https://doi.org/10.1016/j.cej.2020.125517.

  56. Li JY, Zhang WM, Zhang X, Huo LY, Liang JY, Wu LS, Liu Y, Gao JF, Pang H, Xue HG. Copolymer derived micro/meso-porous carbon nanofibers with vacancy-type defects for high-performance supercapacitors. J Mater Chem A. 2020;8(5):2463. https://doi.org/10.1039/c9ta08850d.

    Article  CAS  Google Scholar 

  57. Zhang WL, Guo R, Sun J, Dang LQ, Liu ZH, Lei ZB, Sun Q. Textile carbon network with enhanced areal capacitance prepared by chemical activation of cotton cloth. J Colloid Interface Sci. 2019;553:705. https://doi.org/10.1016/j.jcis.2019.06.048.

    Article  CAS  Google Scholar 

  58. Han SC, Quan JL, Zhou FG, Xue YH, Li N, Li FY, Wang D. 3D printing of architectured graphene-based aerogels by cross-linking GO inks with adjustable viscoelasticity for energy storage devices. Rare Met. 2022;42(3):971. https://doi.org/10.1007/s12598-022-02202-y.

  59. Zhang LL, Zhao XS. Carbon-based materials as supercapacitor electrodes. Chem Soc Rev. 2009;38(9):2520. https://doi.org/10.1039/b813846j.

    Article  CAS  Google Scholar 

  60. Zhan YB, Zhou HM, Guo FQ, Tian BL, Du SL, Dong YC, Qian L. Preparation of highly porous activated carbons from peanut shells as low-cost electrode materials for supercapacitors. J Energy Storage. 2021;34:102180. https://doi.org/10.1016/j.est.2020.102180.

  61. Chen TT, Luo L, Luo LC, Deng JP, Wu X, Fan MZ, Du GB, Zhao WG. High energy density supercapacitors with hierarchical nitrogen-doped porous carbon as active material obtained from bio-waste. Renew Energy. 2021;175:760. https://doi.org/10.1016/j.renene.2021.05.006.

    Article  CAS  Google Scholar 

  62. Yi JL, Yu XH, Zhang RL, Liu L. Chitosan-based synthesis of O, N, and P codoped hierarchical porous carbon as electrode materials for supercapacitors. Energy Fuels. 2021;35(24):20339. https://doi.org/10.1021/acs.energyfuels.1c03164.

    Article  CAS  Google Scholar 

  63. Pandey K, Jeong HK. Coffee waste-derived porous carbon based flexible supercapacitors. Chem Phys Lett. 2022;809:140173. https://doi.org/10.1016/j.cplett.2022.140173.

  64. Zhou Y, Cheng XY, Tynan B, Sha Z, Huang F, Islam MS, Zhang J, Rider AN, Dai LM, Chu DW, Wang DW, Han ZJ, Wang CH. High-performance hierarchical MnO2/CNT electrode for multifunctional supercapacitors. Carbon. 2021;184:504. https://doi.org/10.1016/j.carbon.2021.08.051.

    Article  CAS  Google Scholar 

  65. Wu P, Cheng S, Yao MH, Yang LF, Zhu YY, Liu PP, Xing O, Zhou J, Wang MK, Luo HW, Liu ML. A low-cost, self-standing NiCo2O4@CNT/CNT multilayer electrode for flexible asymmetric solid-state supercapacitors. Adv Funct Mater. 2017;27(34):1702160. https://doi.org/10.1002/adfm.201702160.

    Article  CAS  Google Scholar 

  66. Li Y, Kang Z, Yan XQ, Cao SY, Li MH, Guo Y, Huan YH, Wen XS, Zhang Y. A three-dimensional reticulate CNT-aerogel for a high mechanical flexibility fiber supercapacitor. Nanoscale. 2018;10(19):9360. https://doi.org/10.1039/C8NR01991F.

    Article  CAS  Google Scholar 

  67. Morenghi A, Scaravonati S, Magnani G, Sidoli M, Aversa L, Verucchi R, Bertoni G, Riccò M, Pontiroli D. Asymmetric supercapacitors based on nickel decorated graphene and porous graphene electrodes. Electrochim Acta. 2022;424:140626. https://doi.org/10.1016/j.electacta.2022.140626.

  68. Raccichini R, Varzi A, Passerini S, Scrosati B. The role of graphene for electrochemical energy storage. Nat Mater. 2015;14(3):271. https://doi.org/10.1038/nmat4170.

    Article  CAS  Google Scholar 

  69. Lin D, Zhang XY, Zeng YX, Yu MH, Lu XH, Tong YX. Recent advances on carbon and transition metallic compound electrodes for high-performance supercapacitors. J Electrochem. 2017;23(5):560. https://doi.org/10.13208/j.electrochem.170342.

  70. Lin SQ, Tang J, Zhang WL, Zhang K, Chen YH, Gao RS, Yin H, Yu XL, Qin LC. Facile preparation of flexible binder-free graphene electrodes for high-performance supercapacitors. RSC Adv. 2022;12(20):12590. https://doi.org/10.1039/D2RA01658C.

    Article  CAS  Google Scholar 

  71. Qin KQ, Liu EZ, Li JJ, Kang JL, Shi CS, He CN, He F, Zhao NQ. Free-standing 3D nanoporous duct-like and hierarchical nanoporous graphene films for micron-level flexible solid-state asymmetric supercapacitors. Adv Energy Mater. 2016;6(18):1600755. https://doi.org/10.1002/aenm.201600755.

    Article  CAS  Google Scholar 

  72. Chen R, Yu M, Sahu RP, Puri IK, Zhitomirsky I. The development of pseudocapacitor electrodes and devices with high active mass loading. Adv Energy Mater. 2020;10(20):1903848. https://doi.org/10.1002/aenm.201903848.

    Article  CAS  Google Scholar 

  73. Brousse K, Pinaud S, Nguyen S, Fazzini PF, Makarem R, Josse C, Thimont Y, Chaudret B, Taberna PL, Respaud M, Simon P. Facile and scalable preparation of ruthenium oxide-based flexible micro-supercapacitors. Adv Energy Mater. 2019;10(6):1903136. https://doi.org/10.1002/aenm.201903136.

    Article  CAS  Google Scholar 

  74. Wang J, Zheng F, Li MJ, Wang J, Jia DH, Mao XD, Hu PF, Zhen Q, Yu Y. V2O5@RuO2 core-shell heterojunction nano-arrays as electrode material for supercapacitors. Chem Eng J. 2022;446:136922. https://doi.org/10.1016/j.cej.2022.136922.

  75. Chang YK, Li PH, Li L, Chang SP, Huo YJ, Mu CP, Nie AP, Xiang JY, Xue TY, Zhai K, Wang BC, Zhao ZS, Yu DL, Wen FS, Liu ZY, Tian YJ. In situ grown ultrafine RuO2 nanoparticles on GeP5 nanosheets as the electrode material for flexible planar micro-supercapacitors with high specific capacitance and cyclability. ACS Appl Mater Interfaces. 2021;13(40):47560. https://doi.org/10.1021/acsami.1c12549.

    Article  CAS  Google Scholar 

  76. Parveen N, Ansari SA, Ansari MZ, Ansari MO. Manganese oxide as an effective electrode material for energy storage: a review. Environ Chem Lett. 2021;20(1):283. https://doi.org/10.1007/s10311-021-01316-6.

    Article  CAS  Google Scholar 

  77. Wu BX, Qian H, Nie ZW, Luo ZO, Wu ZX, Liu P, He H, Wu JH, Chen SG, Zhang FF. Ni3S2 nanorods growing directly on Ni foam for all-solid-state asymmetric supercapacitor and efficient overall water splitting. J Energy Chem. 2020;46:178. https://doi.org/10.1016/j.jechem.2019.11.011.

    Article  Google Scholar 

  78. Zhang GF, Qin P, Nasser R, Li SK, Chen P, Song JM. Synthesis of Co(CO3)0.5(OH)/Ni2(CO3)(OH)2 nanobelts and their application in flexible all-solid-state asymmetric supercapacitor. Chem Eng J. 2020;387:124029. https://doi.org/10.1016/j.cej.2020.124029.

  79. Liu G, Liu J, Xu KJ, Wang LY, Xiong SX. Fabrication of flexible graphene paper/MnO2 composite supercapacitor electrode through electrodeposition of MnO2 nanoparticles on graphene paper. ChemistrySelect. 2021;6(26):6803. https://doi.org/10.1002/slct.202101207.

    Article  CAS  Google Scholar 

  80. Zou Q, Khalafallah D, Wu ZX, Chen JH, Zhi MJ, Hong ZL. Supercritical ethanol deposition of Ni(OH)2 nanosheets on carbon cloth for flexible solid-state asymmetric supercapacitor electrode. J Supercrit Fluids. 2020;159:104774. https://doi.org/10.1016/j.supflu.2020.104774.

  81. Chen F, Ji YJ, Ren FY, Tan SF, Wang ZQ. Three-dimensional hierarchical core-shell CuCo2O4@Co(OH)2 nanoflakes as high-performance electrode materials for flexible supercapacitors. J Colloid Interface Sci. 2021;586:797. https://doi.org/10.1016/j.jcis.2020.11.004.

    Article  CAS  Google Scholar 

  82. Jiang Y, Ou JF, Luo ZC, Chen YH, Wu ZH, Wu H, Fu XB, Luo SJ, Huang Y. High capacitive antimonene/CNT/PANI free-standing electrodes for flexible supercapacitor engaged with self-healing function. Small. 2022;18(25):e2201377. https://doi.org/10.1002/smll.202201377.

  83. Gao FX, Song JY, Teng H, Luo XL, Ma MM. All-polymer ultrathin flexible supercapacitors for electronic skin. Chem Eng J. 2021;405:126915. https://doi.org/10.1016/j.cej.2020.126915.

  84. Chen Q, Wang XQ, Chen F, Zhang N, Ma MM. Extremely strong and tough polythiophene composite for flexible electronics. Chem Eng J. 2019;368:933. https://doi.org/10.1016/j.cej.2019.02.203.

    Article  CAS  Google Scholar 

  85. Gai ZS. Preparation of Conductive Polymer Matrix and its Composites and their Applications in Supercapacitors. Jinan: Qilu University of Technology. 2021;5. https://doi.org/10.27278/d.cnki.gsdqc.2021.000223.

  86. Che BY, Li H, Zhou D, Zhang YF, Zeng ZH, Zhao CY, He CB, Liu EJ, Lu XH. Porous polyaniline/carbon nanotube composite electrode for supercapacitors with outstanding rate capability and cyclic stability. Compos Part B Eng. 2019;165:671. https://doi.org/10.1016/j.compositesb.2019.02.026.

    Article  CAS  Google Scholar 

  87. Ahirrao DJ, Pal AK, Singh V, Jha N. Nanostructured porous polyaniline (PANI) coated carbon cloth (CC) as electrodes for flexible supercapacitor device. J Mater Sci Technol. 2021;88:168. https://doi.org/10.1016/j.jmst.2021.01.075.

    Article  CAS  Google Scholar 

  88. Luo XG, Liang YX, Weng W, Hu ZX, Zhang Y, Yang JJ, Yang LJ, Zhu MF. Polypyrrole-coated carbon nanotube/cotton hybrid fabric with high areal capacitance for flexible quasi-solid-state supercapacitors. Energy Storage Mater. 2020;33:11. https://doi.org/10.1016/j.ensm.2020.07.036.

    Article  Google Scholar 

  89. Li JP, Qiu S, Liu BF, Chen HY, Xiao DS, Li H. Strong interaction between polyaniline and carbon fibers for flexible supercapacitor electrode materials. J Power Sources. 2021;483:229219. https://doi.org/10.1016/j.jpowsour.2020.229219.

  90. Xu SZ, Hao HL, Chen YN, Li WY, Shen WZ, Shearing PR, Brett DJL, He GJ. Flexible all-solid-state supercapacitors based on PPy/rGO nanocomposite on cotton fabric. Nanotechnology. 2021;32(30):305401. https://doi.org/10.1088/1361-6528/abf9c4.

  91. Wu KZ, Zhao JJ, Wu RT, Ruan B, Liu HT, Wu MX. The impact of Fe3+ doping on the flexible polythiophene electrodes for supercapacitors. J Electroanal Chem. 2018;823:527. https://doi.org/10.1016/j.jelechem.2018.06.052.

    Article  CAS  Google Scholar 

  92. Vijeth H, Ashokkumar SP, Yesappa L, Niranjana M, Vandana M, Devendrappa H. Camphor sulfonic acid assisted synthesis of polythiophene composite for high energy density all-solid-state symmetric supercapacitor. J Mater Sci Mater Electron. 2019;30(8):7471. https://doi.org/10.1007/s10854-019-01060-2.

    Article  CAS  Google Scholar 

  93. Du W, Bai YL, Xu JQ, Zhao HB, Zhang L, Li XF, Zhang JJ. Advanced metal-organic frameworks (MOFs) and their derived electrode materials for supercapacitors. J Power Sources. 2018;402:281. https://doi.org/10.1016/j.jpowsour.2018.09.023.

    Article  CAS  Google Scholar 

  94. Sheberla D, Bachman JC, Elias JS, Sun CJ, Shao-Horn Y, Dincă M. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat Mater. 2017;16(2):220. https://doi.org/10.1038/nmat4766.

    Article  CAS  Google Scholar 

  95. Maliha Z, Rani M, Neffati R, Mahmood A, Iqbal MZ, Shah A. Investigation of copper/cobalt MOFs nanocomposite as an electrode material in supercapacitors. Int J Energy Res. 2022;46(12):17404. https://doi.org/10.1002/er.8406.

    Article  CAS  Google Scholar 

  96. Zahra SA, Ceesay E, Rizwan S. Zirconia-decorated V2CTx MXene electrodes for supercapacitors. J Energy Storage. 2022;55:105721. https://doi.org/10.1016/j.est.2022.105721.

  97. Liu X, Liu CF, Xu S, Cheng T, Wang S, Lai WY, Huang W. Porous organic polymers for high-performance supercapacitors. Chem Soc Rev. 2022;51(8):3181. https://doi.org/10.1039/d2cs00065b.

    Article  CAS  Google Scholar 

  98. Liu YY, Li XC, Wang S, Cheng T, Yang H, Liu C, Gong YT, Lai WY, Huang W. Self-templated synthesis of uniform hollow spheres based on highly conjugated three-dimensional covalent organic frameworks. Nat Commun. 2020;11(1):5561. https://doi.org/10.1038/s41467-020-18844-4.

    Article  CAS  Google Scholar 

  99. Xu ZJ, Liu YN, Wu ZT, Wang RT, Wang QF, Li T, Zhang JH, Cheng J, Yang ZH, Chen SF, Miao MH, Zhang DH. Construction of extensible and flexible supercapacitors from covalent organic framework composite membrane electrode. Chem Eng J. 2020;387:124071. https://doi.org/10.1016/j.cej.2020.124071.

  100. Cheng T, Zhang YZ, Wang S, Chen YL, Gao SY, Wang F, Lai WY, Huang W. Conductive hydrogel-based electrodes and electrolytes for stretchable and self-healable supercapacitors. Adv Funct Mater. 2021;31(24):2101303. https://doi.org/10.1002/adfm.202101303.

    Article  CAS  Google Scholar 

  101. Yu T, Lei XP, Chen HN, Fan K, Wang DD, Gao YQ. Conductive hydrogels with 2D/2D β-NiS/Ti3C2Tx heterostructure for high-performance supercapacitor electrode materials. Ceram Int. 2022;48(1):1382. https://doi.org/10.1016/j.ceramint.2021.09.224.

    Article  CAS  Google Scholar 

  102. Yan Y, Li B, Guo W, Pang H, Xue HG. Vanadium based materials as electrode materials for high performance supercapacitors. J Power Sources. 2016;329:148. https://doi.org/10.1016/j.jpowsour.2016.08.039.

    Article  CAS  Google Scholar 

  103. Xu XM, Xiong FY, Meng JS, Wang XP, Niu CJ, An QY, Mai LQ. Vanadium-based nanomaterials: a promising family for emerging metal-Ion batteries. Adv Funct Mater. 2020;30(10):1904398. https://doi.org/10.1002/adfm.201904398.

    Article  CAS  Google Scholar 

  104. Liu YY, Xu L, Guo XT, Lv TT, Pang H. Vanadium sulfide based materials: synthesis, energy storage and conversion. J Mater Chem A. 2020;8(40):20781. https://doi.org/10.1039/d0ta07436e.

    Article  CAS  Google Scholar 

  105. Brown E, Acharya J, Pandey GP, Wu J, Li J. Highly stable three lithium insertion in thin V2O5 shells on vertically aligned carbon nanofiber arrays for ultrahigh-capacity lithium ion battery cathodes. Adv Mater Interfaces. 2016;3(23):1600824. https://doi.org/10.1002/admi.201600824.

    Article  CAS  Google Scholar 

  106. Jiang HF, Cai XY, Qian Y, Zhang CY, Zhou LJ, Liu WL, Li BS, Lai LF, Huang W. V2O5 embedded in vertically aligned carbon nanotube arrays as free-standing electrodes for flexible supercapacitors. J Mater Chem A. 2017;5(45):23727. https://doi.org/10.1039/c7ta07727k.

    Article  CAS  Google Scholar 

  107. Wang JG, Liu HY, Liu HZ, Hua W, Shao MH. Interfacial constructing flexible V2O5@polypyrrole core-shell nanowire membrane with superior supercapacitive performance. ACS Appl Mater Interfaces. 2018;10(22):18816. https://doi.org/10.1021/acsami.8b05660.

    Article  CAS  Google Scholar 

  108. Foo CY, Sumboja A, Tan DJH, Wang J, Lee PS. Flexible and highly scalable V2O5-rGO electrodes in an organic electrolyte for supercapacitor devices. Adv Energy Mater. 2014;4(12):1400236. https://doi.org/10.1002/aenm.201400236.

    Article  CAS  Google Scholar 

  109. Hu BB, Yang S, Li Y, Xu CL, Chen P, Yu JJ, Yu DM, Chen CG. Construction of free binder V2O5 and Fe2O3 flexible electrode and its application in supercapacitor. Ciesc J. 2020;71(10):4836. https://doi.org/10.11949/0438-1157.20191307.

  110. Panigrahi K, Howli P, Chattopadhyay KK. 3D network of V2O5 for flexible symmetric supercapacitor. Electrochim Acta. 2020;337:135701. https://doi.org/10.1016/j.electacta.2020.135701.

  111. Guo K, Li YJ, Li C, Yu N, Li HQ. Compact self-standing layered film assembled by V2O5·nH2O/CNTs 2D/1D composites for high volumetric capacitance flexible supercapacitors. Sci China Mater. 2019;62(7):936. https://doi.org/10.1007/s40843-018-9386-8.

    Article  CAS  Google Scholar 

  112. Yang SB, Gong YJ, Liu Z, Zhan L, Hashim DP, Ma LL, Vajtai R, Ajayan PM. Bottom-up approach toward single-crystalline VO2-graphene ribbons as cathodes for ultrafast lithium storage. Nano Lett. 2013;13(4):1596. https://doi.org/10.1021/nl400001u.

    Article  CAS  Google Scholar 

  113. Basu R, Ghosh S, Bera S, Das A, Dhara S. Phase-pure VO2 nanoporous structure for binder-free supercapacitor performances. Sci Rep. 2019;9(1):4621. https://doi.org/10.1038/s41598-019-40225-1.

    Article  CAS  Google Scholar 

  114. Lee M, Wee BH, Hong JD. High performance flexible supercapacitor electrodes composed of ultralarge graphene sheets and vanadium dioxide. Adv Energy Mater. 2015;5(7):1401890. https://doi.org/10.1002/aenm.201401890.

    Article  CAS  Google Scholar 

  115. Du HM, Ding FF, Zhao JS, Zhang XX, Li YW, Zhang Y, Li J, Yang XF, Li K, Yang YQ. Core-shell structured Ni3S2@VO2 nanorods grown on nickel foam as battery-type materials for supercapacitors. Appl Surf Sci. 2020;508:144876. https://doi.org/10.1016/j.apsusc.2019.144876.

  116. Thulasi KM, Manikkoth ST, Paravannoor A, Palantavida S, Bhagiyalakshmi M, Vijayan BK. Facile synthesis of TNT-VO2(M) nanocomposites for high performance supercapacitors. J Electroanal Chem. 2020;878:114644. https://doi.org/10.1016/j.jelechem.2020.114644.

  117. Zhu WH, Li RZ, Xu P, Li YY, Liu JP. Vanadium trioxide@carbon nanosheet array-based ultrathin flexible symmetric hydrogel supercapacitors with 2V voltage and high volumetric energy density. J Mater Chem A. 2017;5(42):22216. https://doi.org/10.1039/c7ta07036e.

    Article  CAS  Google Scholar 

  118. Hou ZQ, Wang ZY, Yang LX, Yang ZG. Nitrogen-doped reduced graphene oxide intertwined with V2O3 nanoflakes as self-supported electrodes for flexible all-solid-state supercapacitors. RSC Adv. 2017;7(41):25732. https://doi.org/10.1039/c7ra02899g.

    Article  CAS  Google Scholar 

  119. Zheng JQ. Designed Synthesis and Properties of Vanadium Oxide-Based Materials for Energy Storage. Dalian: Dalian University of Technology. 2020;80. https://doi.org/10.26991/d.cnki.gdllu.2020.003603.

  120. Wang HW, Zhang HY, Zhang DF, Chen JF, Zhang SQ, Zhang SS, Yu JL, Wu QB, Li QY. Toward enhanced electrochemical performance by investigation of the electrochemical reconstruction mechanism in Co2V2O7 hexagonal nanosheets for hybrid supercapacitors. ACS Appl Mater Interfaces. 2022;14(6):8106. https://doi.org/10.1021/acsami.1c18110.

    Article  CAS  Google Scholar 

  121. Guo M, Balamurugan J, Kim NH, Lee JH. High-energy solid-state asymmetric supercapacitor based on nickel vanadium oxide/NG and iron vanadium oxide/NG electrodes. Appl Catal B Environ. 2018;239:290. https://doi.org/10.1016/j.apcatb.2018.08.026.

    Article  CAS  Google Scholar 

  122. Sial QA, Kalanur SS, Seo H. Lamellar flower inspired hierarchical alpha manganese vanadate microflowers for high-performance flexible hybrid supercapacitors. Ceram Int. 2022;48(17):24989. https://doi.org/10.1016/j.ceramint.2022.05.152.

    Article  CAS  Google Scholar 

  123. Low WH, Lim SS, Siong CW, Chia CH, Khiew PS. One dimensional MnV2O6 nanobelts on graphene as outstanding electrode material for high energy density symmetric supercapacitor. Ceram Int. 2021;47(7):9560. https://doi.org/10.1016/j.ceramint.2020.12.090.

    Article  CAS  Google Scholar 

  124. Guo ZL, Yang L, Wang W, Cao LX, Dong BH. Ultrathin VS2 nanoplate with in-plane and out-of-plane defects for an electrochemical supercapacitor with ultrahigh specific capacitance. J Mater Chem A. 2018;6(30):14681. https://doi.org/10.1039/c8ta03812k.

    Article  CAS  Google Scholar 

  125. Zhang DD, Li J, Su Z, Hu SY, Li HP, Yan YW. Electrospun polyporous VN nanofibers for symmetric all-solid-state supercapacitors. J Adv Ceram. 2018;7(3):246. https://doi.org/10.1007/s40145-018-0276-2.

    Article  CAS  Google Scholar 

  126. Van Lam D, Shim HC, Kim JH, Lee HJ, Lee SM. Carbon textile decorated with pseudocapacitive VC/VxOy for high-performance flexible supercapacitors. Small. 2017;13(44):1702702. https://doi.org/10.1002/smll.201702702.

    Article  CAS  Google Scholar 

  127. Wang CL, Wu X, Ma YH, Mu G, Li YY, Luo C, Xu HJ, Zhang YY, Yang J, Tang XD, Zhang J, Bao WZ, Duan CG. Metallic few-layered VSe2 nanosheets: high two-dimensional conductivity for flexible in-plane solid-state supercapacitors. J Mater Chem A. 2018;6(18):8299. https://doi.org/10.1039/c8ta00089a.

    Article  CAS  Google Scholar 

  128. Zhang MY, Miao JY, Yan XH, Zhu YH, Li YL, Zhang WJ, Zhu W, Pan JM, Javed MS, Hussain S. Vanadium disulfide nanosheets loaded on carbon cloth as electrode for flexible quasi-solid-state asymmetric supercapacitors: energy storage mechanism and electrochemical performance. J Mater Chem C. 2022;10(2):640. https://doi.org/10.1039/d1tc03903b.

    Article  CAS  Google Scholar 

  129. Rajendran K, Rajendran R, Anthuvan AJ, Nagamony P, Therese HA. Polyethylene glycol assisted synthesis of pristine vanadium tetrasulfide nanostructures as high performance electrode material for symmetric supercapacitors. J Energy Storage. 2022;51:104401. https://doi.org/10.1016/j.est.2022.104401.

  130. Wang XF, Zhang YF, Zheng JQ, Jiang HM, Dong XY, Liu X, Meng CG. Fabrication of vanadium sulfide VS4 wrapped with carbonaceous materials as an enhanced electrode for symmetric supercapacitors. J Colloid Interface Sci. 2020;574:312. https://doi.org/10.1016/j.jcis.2020.04.072.

    Article  CAS  Google Scholar 

  131. Sharma A, Patra A, Namsheer K, Mane P, Chakraborty B, Rout CS. All-solid-state asymmetric supercapacitors based on VS4 nano-bundles and MXene nanosheets. J Mater Sci. 2021;56(36):20008. https://doi.org/10.1007/s10853-021-06537-2.

    Article  CAS  Google Scholar 

  132. Jia HN, Cai YF, Li S, Zheng XH, Miao LF, Wang ZY, Qi JL, Cao J, Feng JC, Fei WD. In situ synthesis of core-shell vanadium nitride@N-doped carbon microsheet sponges as high-performance anode materials for solid-state supercapacitors. J Colloid Interface Sci. 2020;560:122. https://doi.org/10.1016/j.jcis.2019.10.061.

    Article  CAS  Google Scholar 

  133. Xiao X, Peng X, Jin HY, Li TQ, Zhang CC, Gao B, Hu B, Huo KF, Zhou J. Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors. Adv Mater. 2013;25(36):5091. https://doi.org/10.1002/adma.201301465.

    Article  CAS  Google Scholar 

  134. Chen MH, Fan H, Zhang Y, Liang XQ, Chen QG, Xia XH. Coupling PEDOT on mesoporous vanadium nitride arrays for advanced flexible all-solid-state supercapacitors. Small. 2020;16(37):e2003434. https://doi.org/10.1002/smll.202003434.

  135. Wu ZQ, Li H, Li H, Yang BB, Wei RH, Zhu XG, Zhu XB, YP. S. Direct growth of porous vanadium nitride on carbon cloth with commercial-level mass loading for solid-state supercapacitors. Chem Eng J. 2022;444:136597. https://doi.org/10.1016/j.cej.2022.136597.

  136. Mei P, Kaneti YV, Pramanik M, Takei T, Dag Ö, Sugahara Y, Yamauchi Y. Two-dimensional mesoporous vanadium phosphate nanosheets through liquid crystal templating method toward supercapacitor application. Nano Energy. 2018;52:336. https://doi.org/10.1016/j.nanoen.2018.07.052.

    Article  CAS  Google Scholar 

  137. Chen NN, Zhou JH, Kang Q, Ji HM, Zhu GY, Zhang Y, Chen SY, Chen J, Feng XM, Hou WH. Amorphous vanadyl phosphate/graphene composites for high performance supercapacitor electrode. J Power Sources. 2017;344:185. https://doi.org/10.1016/j.jpowsour.2017.01.119.

    Article  CAS  Google Scholar 

  138. Hu BB, Xu CL, Yu DM, Chen CG. Pseudocapacitance multiporous vanadyl phosphate/graphene thin film electrode for high performance electrochemical capacitors. J Colloid Interface Sci. 2021;590:341. https://doi.org/10.1016/j.jcis.2021.01.042.

    Article  CAS  Google Scholar 

  139. Cheng T, Wang F, Zhang YZ, Li L, Gao SY, Yang XL, Wang S, Chen PF, Lai WY. 3D printable conductive polymer hydrogels with ultra-high conductivity and superior stretchability for free-standing elastic all-gel supercapacitors. Chem Eng J. 2022;450:138311. https://doi.org/10.1016/j.cej.2022.138311.

  140. Yan J, Li SH, Lan BB, Wu YC, Lee PS. Rational design of nanostructured electrode materials toward multifunctional supercapacitors. Adv Funct Mater. 2019;30(2):1902564. https://doi.org/10.1002/adfm.201902564.

    Article  CAS  Google Scholar 

  141. Wang S, Ma JX, Shi XY, Zhu YY, Wu ZS. Recent status and future perspectives of ultracompact and customizable micro-supercapacitors. Nano Research Energy. 2022;1:e9120018. https://doi.org/10.26599/nre.2022.9120018.

  142. Peng CY, Jin MM, Han D, Liu X, Lai LF. Structural engineering of V2O5 nanobelts for flexible supercapacitors. Mater Lett. 2022;320:132391. https://doi.org/10.1016/j.matlet.2022.132391.

  143. Zhuang HY, Yang FD. Vanadium metal-organic framework derived 2D hierarchical VO2 nanosheets grown on carbon cloth for advanced flexible energy storage devices. Surf Interfaces. 2021;25:101232. https://doi.org/10.1016/j.surfin.2021.101232.

  144. Purushothaman KK, Saravanakumar B, Muralidharan G, Dhanashankar M. Design of additive free 3D floral shaped V2O5@Ni foam for high performance supercapacitors. Mater Technol. 2017;32(9):584. https://doi.org/10.1080/10667857.2017.1311526.

    Article  CAS  Google Scholar 

  145. Zhang Y, Xu X, Gao YF, Gao DF, Wei ZH, Wu HH. In-situ synthesis of three-dimensionally flower-like Ni3V2O8@carbon nanotubes composite through self-assembling for high performance asymmetric supercapacitors. J Power Sources. 2020;455:227985. https://doi.org/10.1016/j.jpowsour.2020.227985.

  146. Govindarajan D, Parasuraman K, Thandavarayan M, Jayaraman T, Ponnusamy VK, Kim HS. Influence of chromium content on microstructural and electrochemical supercapacitive properties of vanadium nitride thin films developed by reactive magnetron co-sputtering process. Ceram Int. 2019;45(10):12643. https://doi.org/10.1016/j.ceramint.2019.02.170.

    Article  CAS  Google Scholar 

  147. Yang S, Cen Y, Hu BB, Xu CL, Li Y, Yu JJ, Hu BH, Meng JZ, Yu DM, Chen CG. High-performance ytterbium-doped V2O5⋅H2O binder-free thin-film electrodes for supercapacitors. ChemElectroChem. 2021;8(11):1993. https://doi.org/10.1002/celc.202100169.

    Article  CAS  Google Scholar 

  148. Zhou X, Chen Q, Wang AQ, Xu J, Wu SS, Shen J. Bamboo-like composites of V2O5/polyindole and activated carbon cloth as electrodes for all-solid-state flexible asymmetric supercapacitors. ACS Appl Mater Interfaces. 2016;8(6):3776. https://doi.org/10.1021/acsami.5b10196.

    Article  CAS  Google Scholar 

  149. Wang CL, Wu X, Xu HJ, Zhu YJ, Liang F, Luo C, Xia Y, Xie XY, Zhang J, Duan CG. VSe2/carbon-nanotube compound for all solid-state flexible in-plane supercapacitor. Appl Phys Lett. 2019;114(2):023902. https://doi.org/10.1063/1.5078555.

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52004252 and 52374359), Henan Provincial Natural Science Foundation (No. 232300421197) and the Project of Zhongyuan Critical Metals Laboratory (No. GJJSGFYQ202310).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Li.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, RJ., Liu, J., Hua, C. et al. Preparation of vanadium-based electrode materials and their research progress in solid-state flexible supercapacitors. Rare Met. 43, 431–454 (2024). https://doi.org/10.1007/s12598-023-02439-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02439-1

Keywords

Navigation