[go: up one dir, main page]

Skip to main content
Log in

Dzyaloshinsky–Moriya interaction (DMI)-induced magnetic skyrmion materials

  • REVIEW
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A magnetic skyrmion is a particle-like spin swirling object with a nontrivial topology that holds great promise for next-generation information carriers in high-performance spintronic devices. It was discovered in a chiral magnet, MnSi with B20 structure, in 2009 and later confirmed as a common feature of magnetic compounds with Dzyaloshinsky–Moriya interaction (DMI). In this work, we provide fundamental insight into the magnetic properties of skyrmion-hosting materials originating from DMI. The relationship between the point groups of the materials and DMI is introduced; then, the common features of magnetic skyrmions experimentally verified in the magnetization and magnetotransport measurements are highlighted. Finally, other particle-like magnetic configurations in chiral magnets and the crossover with a superconductor are discussed.

Graphic Abstract

摘要

磁斯格明子是一种具有非平凡拓扑结构的粒子状涡旋结构, 它为构建下一代高性能自旋电子设备的信息载体提供了广阔前景。 2009年, 在具有B20结构的手性磁材料MnSi中发现了磁斯格明子, 随后被证实磁斯格明子的存在是具有Dzyaloshinsky-Moriya相互作用 (DMI) 的磁性化合物的共同特征。 在本工作中, 我们从基础层面提供了关于DMI诱导磁斯格明子材料物理的基本理解, 介绍了材料的点群与DMI之间的关系; 随后, 重点介绍了在磁化和磁输运测量中通过实验验证的磁斯格明子的共同特征。 最后, 讨论了手性磁体中的其他新型类粒子磁结构, 磁斯格明子物理与超导物理的交叉领域在文中也得到了讨论。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2

Reproduced with permission from Ref. [37]. Copyright 2017, Springer Nature; i Reproduced with permission from Ref. [50]. Copyright 2019, Wiley–VCH Verlag GmbH & Co. KGaA, Weinheim

Fig. 3

Reproduced with permission from Ref. [10]. Copyright 2009, The American Association for the Advancement of Science. b Bulk GaV4S8. Reproduced with permission from Ref. [35]. Copyright 2015, Springer Nature. c Thin film Mn1.4Pt0.9Pd0.1Sn. Reproduced with permission from Ref. [37]. Copyright 2017, Springer Nature

Fig. 4

Reproduced with permission from Ref. [79]. Copyright 2016, IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

Fig. 5
Fig. 6

Reproduced with permission from Ref. [27]. Copyright 2016, American Physical Society. b Superconductivity in Rh2Mo3N. Reproduced with permission from Ref. [110]. Copyright 2016, American Physical Society. c Time-reversal symmetry preserved in superconductor Rh2Mo3N based on μSR investigation. Reproduced with permission from Ref. [115]. Copyright 2018, American Physical Society. d Different behaviors of Rh2Mo3N at 6.0 and 22.0 GPa. Reproduced with permission from Ref. [106]. Copyright 2019, American Physical Society

Similar content being viewed by others

References

  1. Skyrme THR. A unified field theory of mesons and baryons. Nucl Phys. 1962;31:556.

    Article  CAS  Google Scholar 

  2. Ho TL. Spinor Bose condensates in optical traps. Phys Rev Lett. 1998;81(4):742.

    Article  CAS  Google Scholar 

  3. Blatter G, Feigel’man MV, Geshkenbein VB, Larkin AI. Vortices in high-temperature superconductors. Rev Mod Phys. 1994;66(4):1125.

    Article  CAS  Google Scholar 

  4. Wright DC, Mermin ND. Crystalline liquids: the blue phases. Rev Mod Phys. 1989;61(2):385.

    Article  CAS  Google Scholar 

  5. Bogdanov N, Yablonskii DA. Thermodynamically stable “vortices” in magnetically ordered crystals. The mixed state of magnets. Sov Phys JETP. 1989;68(1):101.

    Google Scholar 

  6. Bogdanov N, Hubert A. Thermodynamically stable magnetic vortex states in magnetic crystals. J Magn Magn Matter. 1994;138:255.

    Article  CAS  Google Scholar 

  7. Rößler UK, Bogdanov N, Pfleiderer C. Spontaneous skyrmion ground states in magnetic metals. Nature. 2006;442(7104):797.

    Article  Google Scholar 

  8. Binz B, Vishwanath A, Aji V. Theory of the helical spin crystal: a candidate for the partially ordered state of MnSi. Phys Rev Lett. 2006;96(20):207202.

    Article  CAS  Google Scholar 

  9. Tewari S, Belitz D, Kirkpatrick TR. Blue quantum fog: Chiral condensation in quantum helimagnets. Phys Rev Lett. 2006;96(4):047207.

    Article  Google Scholar 

  10. Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georjii RB. Skyrmion lattice in a chiral magnet. Science. 2009;323(5916):915.

    Article  Google Scholar 

  11. Yu XZ, Onose Y, Kanazawa N, Park JH, Han JH, Matsui Y, Nagaosa N, Tokura Y. Real-space observation of a two-dimensional skyrmion crystal. Nature. 2010;465(7300):901.

    Article  CAS  Google Scholar 

  12. Nagaosa N, Tokura Y. Topological properties and dynamics of magnetic skyrmions. Nat Nanotech. 2013;8(12):899.

    Article  CAS  Google Scholar 

  13. Jonietz F, Mühlbauer S, Pflerderer C, Neubauer A, Münzer W, Bauer A, Adams T, Georjii R, Böni P, Duine RA, Everschor K, Garst M, Rosch A. Spin transfer torques in MnSi at ultralow current densities. Science. 2010;330(6011):1648.

    Article  CAS  Google Scholar 

  14. Yu XZ, Kanazawa N, Zhang WZ, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y, Tokura Y. Skyrmion flow near room temperature in an ultralow current density. Nat Commun. 2012;3:988.

    Article  CAS  Google Scholar 

  15. Fert A, Cros V. Sampaio. Skyrmions on the track Nat Nanotech. 2013;8(3):152.

    Article  CAS  Google Scholar 

  16. Dzyaloshinsky I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J Phys Chem Solids. 1958;4(4):241.

    Article  CAS  Google Scholar 

  17. Moriya T. Anisotropic superexchange interaction and weak ferromagnetism. Phys Rev. 1960;120(1):91.

    Article  CAS  Google Scholar 

  18. Lin YS, Grundy J, Giess EA. Bubble domains in magnetostatically coupled garnet films. Appl Phys Lett. 1973;23(8):485.

    Article  CAS  Google Scholar 

  19. Malozemoff AP, Slonczewski JC. Magnetic Domian Walls in Bubble Materials. New York: Academic Press; 1979. 306.

    Google Scholar 

  20. Garel T, Doniach S. Phase transitions with spontaneous modulation−the dipolar Ising ferromagnet. Phys Rev B. 1982;26(1):325.

    Article  Google Scholar 

  21. Suzuki T. A study of magnetization distribution of submicron bubbles in sputtered Ho-Co thin films. J Magn Magn Mater. 1983;31–34:1009.

    Google Scholar 

  22. Okubo T, Chung S, Kawamura H. Multiple-q states and the skyrmion lattice of the triangular-lattice Heisenberg antiferromagnet under magnetic fields. Phys Rev Lett. 2012;108(1):017206.

    Article  Google Scholar 

  23. Kurumaji T, Nakajima T, Hirschberger M, Kikkawa A, Yamasaki Y, Sagayama H, Nakao H, Taguchi Y, Arima T, Tokura Y. Skyrmion lattice with a giant topological Hall effect in a frustrated troamgular-lattice magnet. Science. 2019;365(6456):914.

    Article  CAS  Google Scholar 

  24. Hirschberger M, Nakajima T, Gao S, Peng L, Kikkawa A, Kurumaji T, Kriener M, Yamasaki Y, Sagayama H, Nakao H, Ohishi K, Kakurai K, Taguchi Y, Yu X, Arima T, Tokura Y. Skyrmion phase and competing magnetic orders on a breathing kagomé lattice. Nat Commun. 2019;10:5831.

    Article  CAS  Google Scholar 

  25. Heinze S, Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blügel. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 2011;7(9):713.

  26. Khanh ND, Nakajima T, Yu X, Gao S, Shibata K, Hirschberger M, Yamasaki Y, Sagayama H, Nakao H, Peng L, Nakajima K, Takagi R, Arima T, Tokura Y, Seki S. Nanometric square skyrmion lattice in a centrosymmetric tetragonal magnet. Nat Nanotech. 2020;15(6):444.

    Article  CAS  Google Scholar 

  27. Li W, Jin C, Che R, Wei W, Lin L, Zhang L, Du H, Tian M, Zang J. Emergence of skyrmions from rich parent phases in the molybdenum nitrides. Phys Rev B. 2016;93(6):060409(R).

    Article  Google Scholar 

  28. Cummins HZ. Experimental studies of structurally incommensurate crystal phases. Phys Rep. 1990;185(5–6):211.

    Article  CAS  Google Scholar 

  29. Ishikawa Y, Tajima K, Bloch D, Roth M. Helical spin structure in manganese silicide MnSi. Solid State Commun. 1976;19(6):525.

    Article  CAS  Google Scholar 

  30. Lonzarich GG, Taillefer L. Effect of spin fluctuations on the magnetic equation of state of ferromagnetic or nearly ferromagnetic metals. J Phys C: Solid State Phys. 1985;18(22):4339.

    Article  CAS  Google Scholar 

  31. Moriya T. Spin Fluctuations in Itinerant Electron Magnetism, Solid-State Sciences, vol. 56. Berlin: Springer; 1985. 82.

    Google Scholar 

  32. Pfleiderer C, Friend RH, Lonzarich GG, Bernhoeft NR, Flouquet J. Transition from a magnetic to a nonmagnetic state as a function of pressure in MnSi. Int J Mod Phys B. 1993;7(1–3):887.

    Article  CAS  Google Scholar 

  33. Pfleiderer C, McMullan GJ, Julian SR, Lonzarich GG. Magnetic quantum phase transition in MnSi under hydrostatic pressure. Phys Rev B. 1997;55(13):8330.

    Article  CAS  Google Scholar 

  34. Löhneysen HV, Rosch A, Vojta M, Wölfle P. Fermi-liquid instabilities at magnetic quantum phase transitions. Rev Mod Phys. 2007;79(3):1015.

    Article  Google Scholar 

  35. Kézsmárki I, Bordács S, Milde P, Neuber E, Eng LM, White JS, Rønnow HM, Dewhurst CD, Mochizuki M, Yanai K, Nakamura H, Ehlers D, Tsurkan V, Loidl A. Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. Nat Mater. 2015;14(11):1116.

    Article  Google Scholar 

  36. Meshcheriakova O, Chadov S, Nayak AK, Rößler UK, Kübler J, André G, Tsirlin AA, Kiss J, Hausdorf S, Kalache A, Schnelle W, Nicklas M, Felser C. Large noncollinearity and spin reorientation in the novel Mn2RhSn Heusler magnet. Phys Rev Lett. 2014;113(8):087203.

    Article  CAS  Google Scholar 

  37. Nayak AK, Kumar V, Ma T, Werner P, Pippel E, Sahoo R, Damay F, Rößler U, Felser C, Parkin SSP. Magnetic antiskyrmions above room temperature in tetragonal Heusler materials. Nature. 2017;548(7669):561.

    Article  CAS  Google Scholar 

  38. Jena J, Stinshoff R, Saha R, Srivastava AK, Ma T, Deniz H, Werner P, Felser C, Parkin SSP. Observation of magnetic antiskyrmions in the low magnetization ferrimagnet Mn2Rh0.95Ir0.05Sn. Nano Lett. 2020;20(1):59.

    Article  CAS  Google Scholar 

  39. Yu XZ, Kanazawa N, Onose Y, Kimoto K, Zhang WZ, Ishiwata S, Matsui Y, Tokura Y. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat Matter. 2011;10(2):106.

    Article  CAS  Google Scholar 

  40. Kanazawa N, Kim JH, Inosov DS, White JS, Egetenmeyer N, Gavilano JL, Ishiwata S, Onose Y, Arima T, Keimer B, Tokura. Possible skyrmion-lattice ground state in the B20 chiral-lattice magnet MnGe as seen via small-angle neutron scattering. Phys Rev B. 2012;86(13):134425.

    Article  Google Scholar 

  41. Grigoriev SV, Dyadkin VA, Moskvin EV, Lamago D, Wolf T, Eckerlebe H, Maleyev H. Helical spin structure of Mn1-yFeySi under a magnetic field: small angle neutron diffraction study. Phys Rev B. 2009;79(14):144417.

    Article  Google Scholar 

  42. Shibata K, Yu XZ, Hara T, Morikawa D, Kanazawa N, Kimoto K, Ishiwata S, Matsui Y, Tokura Y. Towards control of the size and helicity of skyrmions in helimagnetic alloys by spin-orbit coupling. Nat Nanotech. 2013;8(10):723.

    Article  CAS  Google Scholar 

  43. Seki S, Yu XZ, Ishiwata S, Tokura Y. Observation of skyrmions in a multiferroic material. Science. 2012;336(6078):198.

    Article  CAS  Google Scholar 

  44. Balasubramanian B, Manchanda P, Pahari R, Chen Z, Zhang W, Valloppilly SR, Li X, Sarella A, Yue L, Ullah A, Dev P, Muller DA, Skomski R, Hadjipanayis GC, Sellmyer DJ. Chiral magnetism and high-temperature skyrmions in B20-ordered Co-Si. Phys Rev Lett. 2020;124(5):057201.

    Article  CAS  Google Scholar 

  45. Tokunaga Y, Yu XZ, White JS, Rønnow HM, Morikawa D, Taguchi Y, Tokura Y. A new class of chiral materials hosting magnetic skyrmions beyond room temperature. Nat Commun. 2015;6:7638.

    Article  CAS  Google Scholar 

  46. Kautzsch L, Bocarsly JD, Felser C, Wilson SD, Seshadri R. Controlling Dzyaloshinskii-Moriya interactions in the skyrmion host cnadidates FePd1-xPtxMo3N. Phys Rev Mater. 2020;4(2):024412.

    Article  CAS  Google Scholar 

  47. Bordács S, Butykai A, Szigeti BG, White JS, Cubitt R, Leonov AO, Widmann S, Ehlers D, Krug von Nidda HA, Tsuikan V, Loidl A, Kézsmárki I. Equilibrium skyrmion lattice ground state in a polar easy-plane magnet. Sci Rep. 2017;7:7584.

    Article  Google Scholar 

  48. Schueller EC, Kitchaev DA, Zuo JL, Bocarsly JD, Cooley JA, Van der Ven A, Wilson SD, Seshadri R. Structural evolution and skyrmionic phase diagram of the lacunar spinel GaMo4Se8. Phys Rev Mater. 2020;4(6):064402.

    Article  CAS  Google Scholar 

  49. Kurumaji T, Nakajima T, Ukleev V, Feoktystov A, Arima T, Kakurai K, Tokura Y. Néel-type skyrmion lattice in the tetragonal polar magnet VOSe2O5. Phys Rev Lett. 2017;119(23):237201.

    Article  Google Scholar 

  50. Jamaluddin SK, Manna SK, Giri B, Madduri PVP, Parkin SSP, Nayak AK. Robust antiskyrmion phase in bulk tetragonal Mn-Pt(Pd)-Sn Heusler system probed by magnetic entropy change and AC-susceptibility measurements. Adv Funct Mater. 2019;29(24):1901776.

    Article  Google Scholar 

  51. Janoschek M, Garst M, Bauer A, Krautscheid P, Georgii R, Böni P, Pfleiderer C. Fluctuation-induced first-order phase transition in Dzyaloshinskii-Moriya helimagnets. Phys Rev B. 2013;87(13):134407.

    Article  Google Scholar 

  52. Nakamura H, Ikeno R, Motoyama G, Kohara T, Kajinami Y, Tabata Y. Low-field multi-step magnetization of GaV4S8 single crystal. J Phys Conf Ser. 2008;145:012077.

    Article  Google Scholar 

  53. Clements EM, Das R, Pokharel G, Phan MH, Christianson AD, Mandrus D, Prestigiacomo JC, Osofsky MS, Srikanth H. Robust cycloid crossover driven by anisotropy in the skyrmion host GaV4S8. Phys Rev B. 2020;101(9):094425.

    Article  CAS  Google Scholar 

  54. Bauer A, Pfleiderer C. Magnetic phase diagram of MnSi inferred from magnetization and ac susceptibility. Phys Rev B. 2012;85(21):214418.

    Article  Google Scholar 

  55. Bannenberg LJ, Lefering AJE, Kakurai K, Onose Y, Endoh Y, Tokura Y, Pappas C. Magnetic relaxation phenomena in the chiral magnet Fe1-xCoxSi: an ac susceptibility study. Phys Rev B. 2016;94(13):134433.

    Article  Google Scholar 

  56. Cevey L, Wilhelm H, Schmidt M, Lortz R. Thermodynamic investigations in the precursor region of FeGe. Phys Status Solid B. 2013;250(3):650.

    Article  CAS  Google Scholar 

  57. Adams T, Chacon A, Wagner M, Bauer A, Brandl G, Pedersen B, Berger H, Lemmens P, Pfleiderer C. Long-wavelength helimagnetic order and skyrmion lattice phase in Cu2OSeO3. Phys Rev Lett. 2012;108(23):237204.

    Article  CAS  Google Scholar 

  58. Bocarsly JD, Heikes C, Brown CM, Wilson SD, Seshadri R. Deciphering structural and magnetic disorder in the chiral skyrmion host materials CoxZnyMnz (x + y + z = 20). Phys Rev Mater. 2019;3(1):014402.

    Article  CAS  Google Scholar 

  59. Bauer A, Garst M, Pfleiderer C. Specific heat of the skyrmion lattice phase and field-induced tricritical point in MnSi. Phys Rev Lett. 2013;110(17):177207.

    Article  CAS  Google Scholar 

  60. Qian F, Bannenberg LJ, Wilhelm H, Chaboussant G, Debeer-Schmitt LM, Schmidt MP, Aqeel A, Palstra TTM, Brück E, Lefering AJE, Pappas C, Mostovoy M, Leonov A. New magnetic phase of the chiral skyrmion material Cu2OSeO3. Sci Adv. 2018;4(9):7323.

    Article  Google Scholar 

  61. Chacon A, Heinen L, Halder M, Bauer A, Simeth W, Mühlbauer S, Berger H, Garst M, Rosch A, Pfleiderer C. Observation of two independent skyrmion phases in a chiral magnetic material. Nat Phys. 2018;14(9):936.

    Article  CAS  Google Scholar 

  62. Leonov AO, Kézsmárki I. Skyrmion robustness in noncentrosymmetric magnets with axial symmetry: the role of anisotropy and tilted magnetic fields. Phys Rev B. 2017;96(21):214413.

    Article  Google Scholar 

  63. Saha R, Srivastava AK, Ma T, Jena J, Werner P, Kunar V, Felser C, Parkin SSP. Intrinsic stability of magnetic anti-skyrmions in the tetragonal inverse Heusler compound Mn1.4Pt0.9Pd0.1Sn. Nat Commun. 2019;10:5305.

    Article  Google Scholar 

  64. Peng L, Takagi R, Koshibae W, Shibata K, Nakajima K, Arima T, Nagaosa N, Seki S, Yu X, Tokura Y. Controlled transformation of skyrmions and antiskyrmions in a non-centrosymmetric magnet. Nat Nanotech. 2020;15(3):181.

    Article  CAS  Google Scholar 

  65. Jena J, Göbel B, Ma T, Kumar V, Saha R, Mertig I, Felser C, Parkin SSP. Elliptical Bloch skyrmion chiral twins in an antiskyrmion system. Nat Commun. 2020;11:1115.

    Article  Google Scholar 

  66. Zhao X, Jin C, Wang C, Du H, Zang J, Tian M, Che R, Zhang Y. Direct imaging of magnetic field-driven transitions of skyrmion cluster states in FeGe nanodisks. PNAS. 2016;113(18):4918.

    Article  CAS  Google Scholar 

  67. Du H, Ning W, Tian M, Zhang Y. Magnetic vortex with skyrmionic core in a thin nanodisk of chiral magnets. EPL. 2013;101(3):37001.

    Article  Google Scholar 

  68. Du H, Ning W, Tian M, Zhang Y. Field-driven evolution of chiral spin textures in a thin helimagnet nanodisk. Phys Rev B. 2013;87(1):014401.

    Article  Google Scholar 

  69. Zheng F, Li H, Wang S, Song D, Jin C, Wei W, Kovács A, Zang J, Tian M, Zhang Y, Du F, Dunin-Borkowski RE. Direct imaging of a zero-field target skyrmion and its polarity switch in a chiral magnetic nanodisk. Phys Rev Lett. 2017;119(19):197205.

    Article  Google Scholar 

  70. Jin C, Li ZA, Kovács A, Caron J, Zhang F, Rybakov FN, Kiselev NS, Du H, Blügel S, Tian M, Zhang Y, Farle M, Dunin-Borkowski RE. Control of morphology and formation of highly geometrically confined magnetic skyrmions. Nat Commun. 2017;8:15569.

    Article  CAS  Google Scholar 

  71. Nagase T, Komatsu M, So YG, Ishida T, Yoshida H, Kawaguchi Y, Tanaka Y, Saitoh K, Ikarashi N, Kuwahara M, Nagao M. Smectic liquid-crystalline structure of skyrmions in chiral magnet Co8.5Zn7.5Mn4 (110) thin film. Phys Rev Lett. 2019;123(13):137203.

    Article  CAS  Google Scholar 

  72. Du H, Che R, Kong L, Zhao X, Jin C, Wang C, Yang J, Ning W, Li R, Jin C, Chen X, Zang J, Zhang Y, Tian M. Edge-mediated skyrmion chain and its collective dynamics in a confined geometry. Nat Commun. 2015;6:8504.

    Article  CAS  Google Scholar 

  73. Shen SQ. Topological Insulators: Dirac Equation in Condensed Matters. Berlin: Springer-Verlag; 2012. 1.

    Book  Google Scholar 

  74. Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz PG, Böni P. Topological Hall effect in the a phase of MnSi. Phys Rev Lett. 2009;102(18):186602.

    Article  CAS  Google Scholar 

  75. Kanazawa N, Onose Y, Arima T, Okuyama D, Ohoyama K, Wakimoto S, Kakurai K, Ishiwata S, Tokura Y. Large topological Hall effect in a short-period helimagnet MnGe. Phys Rev Lett. 2011;106(15):156603.

    Article  CAS  Google Scholar 

  76. Stolt MJ, Schneider S, Mathur N, Shearer MJ, Rellinghaus B, Nielsch K, Jin S. Eletrical detection and magnetic imaging of stabilized magnetic skyrmions in Fe1-xCoxGe (x < 0.1) microplates. Adv Funct Mater. 2019;29(12):1805418.

    Article  Google Scholar 

  77. Vir P, Gayles J, Sukhanov AS, Kumar N, Damay F, Sun Y, Kübler J, Shekhar C, Felser C. Anisotropic topological Hall effect with real and momentum space Berry curvature in the antiskyrmion-hosting Heusler compound Mn1.4PtSn. Phys Rev B. 2019;99(14):140406.

    Article  CAS  Google Scholar 

  78. Giri B, Mallick AI, Singh C, Madduri PVP, Damay F, Alam A, Nayak AK. Robust topological Hall effect driven by tunable noncoplanar magnetic state in Mn-Pt-In inverse tetragonal Heusler alloys. Phys Rev B. 2020;102(1):014449.

    Article  CAS  Google Scholar 

  79. Huang SX, Chen F, Kang J, Zang J, Shu GJ, Chou FC, Chien CL. Unusual magnetoresistance in cubic B20 Fe0.85Co0.15Si chiral magnets. New J Phys. 2016;18:065010.

    Article  Google Scholar 

  80. Kang J, Zang J. Transport theory of metallic B20 helimagnets. Phys Rev B. 2016;91(13):134401.

    Article  Google Scholar 

  81. DeGrave JP, Liang D, Jin S. A general method to measure the Hall effect in nanowire: examples of FeS2 and MnSi. Nano Lett. 2013;13(6):2704.

    Article  CAS  Google Scholar 

  82. Du H, DeGrave JP, Xue F, Liang D, Ning W, Yang J, Tian M, Zhang Y, Jin S. Highly stable skyrmion state in helimagnetic MnSi nanowires. Nano Lett. 2014;14(4):2026.

    Article  CAS  Google Scholar 

  83. Du H, Liang D, Jin C, Kong L, Stolt MJ, Ning W, Yang J, Xing Y, Wang J, Che R, Zang J, Jin S, Zhang Y, Tian M. Electrical probing of field-driven cascading quantized transitions of skyrmion cluster states in MnSi nanowires. Nat Commun. 2015;6:7637.

    Article  Google Scholar 

  84. Oike H, Kikkawa A, Kanazawa N, Taguchi Y, Kawasaki M, Tokura Y, Kagawa F. Interplay between topological and thermodynamic stability in a metastable magnetic skyrmion lattice. Nat Phys. 2016;12(1):62.

    Article  CAS  Google Scholar 

  85. Karube K, White JS, Reynolds N, Gavilano JL, Oike H, Kikkawa A, Kagawa F, Tokunaga Y, Rønnow HM, Tokura Y, Taguchi Y. Robust metastable skyrmions and their triangular-square lattice structural transition in a high-temperature chiral magnet. Nat Mater. 2016;15(12):1237.

    Article  CAS  Google Scholar 

  86. Karube K, White JS, Morikawa D, Bartkowiak M, Kikkawa A, Tokunaga Y, Arima T, Rønnow HM, Tokura Y, Taguchi Y. Skyrmion formation in a bulk chiral magnet at zero magnetic field and above room temperature. Phys Rev Mater. 2017;1(7):074405.

    Article  Google Scholar 

  87. Morikawa D, Yu XZ, Karube K, Tokunaga Y, Taguchi Y, Arima T, Tokura Y. Deformation of topologically-protected supercooled skyrmions in a thin plate of chiral magnet Co8Zn8Mn4. Nano Lett. 2017;17(3):1637.

    Article  CAS  Google Scholar 

  88. Xie W, Thimmaiah S, Lamsal J, Liu J, Heitmann W, Quirinale D, Goldman AI, Pecharsky V, Miller GJ. β-Mn-type Co8+xZn12x as a defect cubic laves phase: site preferences, magnetism, and electronic structure. Inorg Chem. 2013;52(16):9399.

    Article  CAS  Google Scholar 

  89. Hori T, Shiraish H, Ishii Y. Magnetic properties of β-MnCoZn alloys. J Magn Magn Mater. 2007;310(2):1820.

    Article  CAS  Google Scholar 

  90. Karube K, White JS, Ukleev V, Dewhurst CD, Cubitt R, Kikkawa A, Tokunaga Y, Rønnow HM, Tokura Y, Taguchi Y. Metastable skyrmion lattices governed by magnetic disorder and anisotropy in β-Mn-type chiral magnets. Phys Rev B. 2020;102(6):064408.

    Article  CAS  Google Scholar 

  91. Lin SZ, Saxena A, Batista CD. Skyrmion fractionalization and merons in chiral magnets with easy-plane anisotropy. Phys Rev B. 2015;91(22):224407.

    Article  Google Scholar 

  92. Yu XZ, Morikawa D, Yokouchi T, Shibata K, Kanazawa N, Kagawa F, Arima T, Tokura Y. Aggregation and collapse dynamics of skyrmions in a non-equilibrium state. Nat Phys. 2018;14(8):832.

    Article  CAS  Google Scholar 

  93. Huang P, Schönenberger T, Cantoni M, Heinen L, Magrez A, Rosch A, Carbone F, Rønnow M. Melting of a skyrmion lattice to a skyrmion liquid via a hexatic phase. Nat Nanotech. 2020;15(9):761.

    Article  CAS  Google Scholar 

  94. Yu XZ, Koshibae W, Tokunaga Y, Shibata K, Taguchi Y, Nagaosa N, Tokura Y. Transformation between meron and skyrmion topological spin textures in a chiral magnet. Nature. 2018;564(7734):95.

    Article  CAS  Google Scholar 

  95. Zheng F, Rybakov FN, Borisov AB, Song D, Wang S, Li ZA, Du H, Kiselev NS, Caron J, Kovács A, Tian M, Zhang Y, Blügel S, Dunin-Borkowski RE. Experimental observation of chiral magnetic bobbers in B20-type FeGe. Nat Nanotech. 2018;13(6):451.

    Article  CAS  Google Scholar 

  96. Rybakov FN, Borisov AB, Blügel S, Kiselev NS. New type of stable particlelike states in chiral magnets. Phys Rev Lett. 2015;115(11):117201.

    Article  Google Scholar 

  97. Rybakov FN, Borisov AB, Blügel S, Kiselev N. New spiral and skyrmion lattice in 3D model of chiral magnets. New J Phys. 2016;18:045002.

    Article  Google Scholar 

  98. Zhu J, Wu Y, Hu Q, Kong L, Tang J, Tian M, Du H. Current-driven transitions of a skyrmion tube and a bobber in stepped nanostructures of chiral magnets. Sci China Phys Mech. 2021;64(2):227511.

    Article  Google Scholar 

  99. Samoilenka A, Shnir Y. Magnetic Hopfions in the Faddeev-Skyrme-Maxwell model. Phys Rev D. 2018;97(12):125014.

    Article  CAS  Google Scholar 

  100. Tai JSB, Smalyukh II. Static Hopf solitons and knotted emergent fields in solid-state noncentrosymmetric magnetic nanostructures. Phys Rev Lett. 2018;121(18):187201.

    Article  CAS  Google Scholar 

  101. Sutcliffe P. Hopfions in chiral magnets. J Phys A Math Theor. 2018;51(37):375401.

    Article  Google Scholar 

  102. Liu Y, Lake RK, Zang J. Binding a hopfion in a chiral magnet nanodisk. Phys Rev B. 2018;98(17):174437.

    Article  CAS  Google Scholar 

  103. Foster D, Kind C, Ackerman PJ, Tai JSB, Dennis M, Smalyukh II. Two-dimensional skyrmion bags in liquid crystals and ferromagnets. Nat Phys. 2019;15(7):655.

    Article  CAS  Google Scholar 

  104. Zeng Z, Zhang C, Jin C, Wang J, Song C, Ma Y, Liu Q, Wang J. Dynamics of skyrmion bags driven by the spin-orbit torque. Appl Phys Lett. 2020;117(17):172404.

    Article  CAS  Google Scholar 

  105. King C, Friedemann S, Read D. Existence and stability of skyrmion bags in magnetic films. Appl Phys Lett. 2020;116(2):022413.

    Article  Google Scholar 

  106. Zhou Y, Wei W, Zhang B, Yuan Y, Chen C, Chen X, An C, Zhou Y, Wu H, Wang S, Qi M, Zhang R, Park C, Tian M, Yang Z. Effect of pressure on structural and electronic properties of the noncentrosymmetric superconductor Rh2Mo3N. Phys Rev B. 2019;100(17):174516.

    Article  CAS  Google Scholar 

  107. Prior TJ, Battle PD. Facile synthesis of interstitial metal nitrides with the filled β-manganese structure. J Solid State Chem. 2003;172(1):138.

    Article  CAS  Google Scholar 

  108. Oldham SE, Battle PD, Blundell SJ, Brooks ML, Pratt FL, Prior TJ. Ferromagnetism in the filled β-Mn phase Fe2xRhxMo3N. J Mater Chem. 2005;15(33):3402.

    Article  CAS  Google Scholar 

  109. Battle PD, Grandjean F, Long GJ, Oldham SE. The influence of chemical composition on the magnetic properties of Fe1.5xCoxRh0.5Mo3N (0 ≤ x ≤ 1.5). J Mater Chem. 2007;17(45):4785.

    Article  CAS  Google Scholar 

  110. Wei W, Zhao GJ, Kim DR, Jin C, Zhang JL, Ling L, Zhang L, Du H, Chen TY, Zang J, Tian M, Chien CL, Zhang Y. Rh2Mo3N: noncentrosymmetric s-wave superconductor. Phys Rev B. 2016;94(10):104503.

    Article  Google Scholar 

  111. Conway JO, Prior TJ. Interstitial nitrides revisited—a simple synthesis of MxMo3N (M = Fe Co, Ni). J Alloys Compd. 2019;774:69.

    Article  CAS  Google Scholar 

  112. Prior TJ, Oldham SE, Couper VJ, Battle PD. Ferromagnetic nitrides with the filled β-Mn structure: Fe2xMxMo3N (M = Ni, Pd, Pt). Chem Mater. 2005;17(7):1867.

    Article  CAS  Google Scholar 

  113. Sukhanov AS, Heinemann A, Kautzsch L, Bocarsly JD, Wilson SD, Felser C, Inosov DS. Robust metastable skyrmions with tunable size in the chiral magnet FePtMo3N. Phys Rev B. 2020;102(14):140409(R).

    Article  Google Scholar 

  114. Qiang BW, Togashi N, Momose S, Wada T, Hajiri T, Kuwahara M, Asano H. Room-temperature magnetic skyrmion in epitaxial thin films of Fe2-xPdxMo3N with the filled β-Mn-type chiral structure. Appl Phys Lett. 2020;117(14):142401.

    Article  CAS  Google Scholar 

  115. Shang T, Wei W, Baines C, Zhang JL, Du HF, Medarde M, Shi M, Mesot J, Shiroka T. Nodeless superconductivity in the noncetrosymmetric Mo3Rh2N superconductor: a μSR study. Phys Rev B. 2018;98(18):180504(R).

    Article  Google Scholar 

  116. Qin PX, Yan H, Wang XN, Feng ZX, Guo HX, Zhou XR, Wu HJ, Zhang X, Leng ZGG, Chen HY, Liu ZQ. Noncollinear spintronics and electric-field control: a review. Rare Met. 2020;39(2):95.

    Article  CAS  Google Scholar 

  117. Wang YQ, Yue M. Research progresses in preparation of 2:17 type Sm(CoCuFeZr)z permanent magnets with high magnetic properties. Chin J Rare Met. 2019;43(11):1210.

    Google Scholar 

  118. Matsumoto T, So YG, Kohno Y, Sawada H, Ikuhara Y, Shibata N. Direct observation of Σ7 domain boundary core structure in magnetic skyrmion lattice. Sci Adv. 2016;2(2):e1501280.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Key Research Program of Frontier Sciences, CAS (No. QYZDB-SSW-SLH009), the Key Research Program of the Chinese Academy of Sciences (No. KJZD-SW-M01), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB33030100), the Equipment Development Project of Chinese Academy of Sciences (No. YJKYYQ20180012), the Natural Science Foundation of China (No. 11904368) and the Natural Science Foundation of Anhui Province (No. 2008085QA32). A portion of this work was supported by the High Magnetic Field Laboratory of Anhui Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Feng Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, WS., He, ZD., Qu, Z. et al. Dzyaloshinsky–Moriya interaction (DMI)-induced magnetic skyrmion materials. Rare Met. 40, 3076–3090 (2021). https://doi.org/10.1007/s12598-021-01746-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01746-9

Keywords

Navigation