[go: up one dir, main page]

Skip to main content
Log in

Upper Ocean Response to The Passage of Cyclone Tauktae in The Eastern Arabian Sea Using In Situ and Multi-Platform Satellite Data

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

The present work examines the response of physical and biogeochemical processes of the upper ocean during the crossing of cyclone Tauktae (14–19 May 2021) over the eastern Arabian Sea utilizing satellite and in situ data. Tauktae cyclone was developed as a depression on 14 May and subsequently intensified into an extremely severe cyclonic storm on 17 May 2021. The observational data obtained from the moored buoy and ARGO floats are used to evaluate the changes in the upper ocean induced by the cyclonic event. Translation speed of the Tauktae cyclone decreased suddenly on 17 May 2021 (early morning) which enhanced the further intensification. The presence of an anticyclonic eddy (warm core) in the proximity of the cyclone track played a crucial role in the sudden increase in the intensity of the cyclone. Remarkable sea surface temperature cooling is observed along the cyclone track, with maximum surface cooling of 1.5–2 °C. The observations show that the isothermal layer depth increased by about 20–30 m due to the strong vertical mixing caused by cyclonic winds. Analysis of subsurface temperature obtained from ARGO floats and RAMA buoy revealed the extent of vertical mixing induced by the cyclone Tauktae. The regions that experienced intense upwelling induced by the cyclone are identified by estimating the Ekman pumping velocity. Significant upwelling occurred in the proximity of the center of the cyclone due to the divergence of the surface water induced by the Ekman transport. An abrupt out-gassing of CO2 from the ocean to the atmosphere was noticed and the magnitude was found to be increased about 8-fold compared to the pre-cyclone values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Anandh, T. S., Das, B. K., Kuttippurath, J., & Chakraborty, A. (2020). A coupled model analyses on the interaction between oceanic eddies and tropical cyclones over the Bay of Bengal. Ocean Dynamics, 70(3), 327–337.

    Article  Google Scholar 

  • Balaguru, K., Chang, P., Saravanan, R., Leung, L. R., Xu, Z., Li, M., & Hsieh, J. S. (2012). Ocean barrier layers’ effect on tropical cyclone intensification. Proceedings of the National Academy of Sciences, 109(36), 14343–14347.

    Article  Google Scholar 

  • Bates, N. R., Knap, A. H., & Michaels, A. F. (1998). Contribution of hurricanes to local and global estimates of air–sea exchange of CO2. Nature, 395(6697), 58–61.

    Article  Google Scholar 

  • Bhowmick, S. A., Agarwal, N., Sharma, R., Sundar, R., Venkatesan, R., Prasad, C. A., & Navaneeth, K. N. (2020). Cyclone amphan: Oceanic conditions pre- and post- cyclone using in-situ and satellite observations. Current Science, 119, 1510–1516.

    Article  Google Scholar 

  • Bourlès, B., Lumpkin, R., McPhaden, M. J., Hernandez, F., Nobre, P., Campos, E., Yu, L., Planton, S., Busalacchi, A., Moura, A. D., & Trotte, J. (2008). The PIRATA program: History, accomplishments, and future directions. Bulletin of the American Meteorological Society, 89(8), 1111–1126.

    Article  Google Scholar 

  • Byju, P., & Kumar, S. P. (2011). Physical and biological response of the Arabian sea to tropical cyclone Phyan and its implications. Marine Environmental Research, 71(5), 325–330.

    Article  Google Scholar 

  • Chacko, N. (2017). Chlorophyll bloom in response to tropical cyclone hudhud in the Bay of Bengal: Bio-Argo subsurface observations. Deep Sea Research Part i Oceanographic Research Papers, 124, 66–72.

    Article  Google Scholar 

  • Chelton, D. B., Schlax, M. G., & Samelson, R. M. (2011). Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2), 167–216.

    Article  Google Scholar 

  • Chen, X., Pan, D., Bai, Y., He, X., Chen, C. T. A., & Hao, Z. (2013). Episodic phytoplankton bloom events in the Bay of Bengal triggered by multiple forcings. Deep Sea Research Part i Oceanographic Research Papers, 73, 17–30.

    Article  Google Scholar 

  • de Boyer Montégut, C., Mignot, J., Lazar, A., & Cravatte, S. (2007). Control of salinity on the mixed layer depth in the world ocean: 1. General description. Journal of Geophysical Research Oceans, 112(C6), 1572.

    Google Scholar 

  • Dong, C., McWilliams, J. C., Liu, Y., & Chen, D. (2014). Global heat and salt transports by eddy movement. Nature Communications, 5(1), 1–6.

    Article  Google Scholar 

  • Goes, J. I., Thoppil, P. G., Gomes, H. D. R., & Fasullo, J. T. (2005). Warming of the Eurasian landmass is making the Arabian sea more productive. Science, 308(5721), 545–547.

    Article  Google Scholar 

  • Gupta, G. V. M., Sudheesh, V., Sudharma, K. V., Saravanane, N., Dhanya, V., Dhanya, K. R., Lakshmi, G., Sudhakar, M., & Naqvi, S. W. A. (2016). Evolution to decay of upwelling and associated biogeochemistry over the southeastern Arabian Sea shelf. Journal of Geophysical Research Biogeosciences, 121(1), 159–175.

    Article  Google Scholar 

  • Krishna, K. M. (2009). Intensifying tropical cyclones over the North Indian ocean during summer monsoon—global warming. Global and Planetary Change, 65(1–2), 12–16.

    Article  Google Scholar 

  • Krishna, K. M. (2016). Observational study of upper ocean cooling due to Phet super cyclone in the Arabian Sea. Advances in Space Research, 57(10), 2115–2120.

    Article  Google Scholar 

  • Lin, I. I., Chen, C. H., Pun, I. F., Liu, W. T., & Wu, C. C. (2009). Warm ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nargis. Geophysical Research Letters, 36(3), L03817.

    Article  Google Scholar 

  • Lin, I. I., Wu, C. C., Emanuel, K. A., Lee, I. H., Wu, C. R., & Pun, I. F. (2005). The interaction of supertyphoon maemi (2003) with a warm ocean eddy. Monthly Weather Review, 133(9), 2635–2649.

    Article  Google Scholar 

  • Malkus, J. S., & Riehl, H. (1960). On the dynamics and energy transformations in steady-state hurricanes. Tellus, 12(1), 1–20.

    Article  Google Scholar 

  • Malone, T. C., Pike, S. E., & Conley, D. J. (1993). Transient variations in phytoplankton productivity at the JGOFS Bermuda time series station. Deep Sea Research Part i Oceanographic Research Papers, 40(5), 903–924.

    Article  Google Scholar 

  • McPhaden, M. J., Busalacchi, A. J., Cheney, R., Donguy, J. R., Gage, K. S., Halpern, D., Ji, M., Julian, P., Meyers, G., Mitchum, G. T., & Takeuchi, K. (1998). The tropical ocean-global atmosphere observing system: A decade of progress. Journal of Geophysical Research Oceans, 103(C7), 14169–14240.

    Article  Google Scholar 

  • Murakami, H., Mizuta, R., & Shindo, E. (2012). Future changes in tropical cyclone activity projected by multi-physics and multi-SST ensemble experiments using the 60-km-mesh MRI-AGCM. Climate Dynamics, 39(9–10), 2569–2584.

    Article  Google Scholar 

  • Murakami, H., Sugi, M., & Kitoh, A. (2013). Future changes in tropical cyclone activity in the North Indian ocean projected by high-resolution MRI-AGCMs. Climate Dynamics, 40(7–8), 1949–1968.

    Article  Google Scholar 

  • Murty, V. S. N., Rao, D. P., & Sastry, J. S. (1983). The lowering of sea surface temperature in the east central Arabian sea associated with a cyclone. Mahasagar, 16(1), 67–71.

    Google Scholar 

  • Naik, H., Naqvi, S. W. A., Suresh, T., & Narvekar, P. V. (2008). Impact of a tropical cyclone on biogeochemistry of the central Arabian sea. Global Biogeochemical Cycles, 22(3), GB3020.

    Article  Google Scholar 

  • Palmén, E. H. (1948). On the formation and structure of tropical cyclones. Geophysica, 3, 26–38.

    Google Scholar 

  • Prasanna Kumar, S., Roshin, R. P., Narvekar, J., Dinesh Kumar, P. K., & Vivekanandan, E. (2010). Signatures of global warming and regional climate shift in the Arabian Sea. In: Climate change and aquatic ecosystems (Eds.: A. Joseph, S.B. Nandan and A. Augustine). Cochin, India, pp. 55-62

  • Premkumar, K., Ravichandran, M., Kalsi, S. R., Sengupta, D., & Gadgil, S. (2000). First results from a new observational system over the Indian seas. Current Science, 78(3), 323–330.

    Google Scholar 

  • Price, J. F. (1981). Upper ocean response to a hurricane. Journal of Physical Oceanography, 11(2), 153–175.

    Article  Google Scholar 

  • Roxy, M. K., Dasgupta, P., McPhaden, M. J., Suematsu, T., Zhang, C., & Kim, D. (2019). Twofold expansion of the Indo-Pacific warm pool warps the MJO life cycle. Nature, 575(7784), 647–651.

    Article  Google Scholar 

  • Scharroo, R., Smith, W. H., & Lillibridge, J. L. (2005). Satellite altimetry and the intensification of hurricane Katrina. Eos, Transactions, American Geophysical Union, 86(40), 366–367.

    Article  Google Scholar 

  • Schott, F. A., & McCreary, J. P., Jr. (2001). The monsoon circulation of the Indian ocean. Progress in Oceanography, 51(1), 1–123.

    Article  Google Scholar 

  • Sengupta, D., Goddalehundi, B. R., & Anitha, D. S. (2008). Cyclone-induced mixing does not cool SST in the post-monsoon north Bay of Bengal. Atmospheric Science Letters, 9(1), 1–6.

    Article  Google Scholar 

  • Shay, L. K., Goni, G. J., & Black, P. G. (2000). Effects of a warm oceanic feature on hurricane opal. Monthly Weather Review, 128(5), 1366–1383.

    Article  Google Scholar 

  • Subrahmanyam, B., Rao, K. H., Srinivasa Rao, N., Murty, V. S. N., & Sharp, R. J. (2002). Influence of a tropical cyclone on chlorophyll-a concentration in the Arabian Sea. Geophysical Research Letters, 29(22), 22–31.

    Article  Google Scholar 

  • Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., & Watson, A. (2009). Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea Research Part II Topical Studies in Oceanography, 56(8–10), 554–577.

    Article  Google Scholar 

  • Vidya, P. J., & Das, S. (2017). Contrasting Chl-a responses to the tropical cyclones Thane and Phailin in the Bay of Bengal. Journal of Marine Systems, 165, 103–114.

    Article  Google Scholar 

  • Vissa, N. K., Satyanarayana, A. N. V., & Kumar, B. P. (2012). Response of upper ocean during passage of MALA cyclone utilizing ARGO data. International Journal of Applied Earth Observation and Geoinformation, 14(1), 149–159.

    Article  Google Scholar 

  • Wanninkhof, R. (1992). Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research: Oceans, 97(C5), 7373–7382.

    Article  Google Scholar 

  • Warner, S. J., Becherer, J., Pujiana, K., Shroyer, E. L., Ravichandran, M., Thangaprakash, V. P., & Moum, J. N. (2016). Monsoon mixing cycles in the Bay of Bengal: A year-long subsurface mixing record. Oceanography, 29(2), 158–169.

    Article  Google Scholar 

  • Weiss, R. (1974). Carbon dioxide in water and seawater: The solubility of a non-ideal gas. Marine Chemistry, 2(3), 203–215.

    Article  Google Scholar 

  • Yang, G., Yu, W., Yuan, Y., Zhao, X., Wang, F., Chen, G., Liu, L., & Duan, Y. (2015). Characteristics, vertical structures, and heat/salt transports of mesoscale eddies in the southeastern tropical Indian Ocean. Journal of Geophysical Research Oceans, 120(10), 6733–6750.

    Article  Google Scholar 

  • Yu, P., Wang, Z. A., Churchill, J., Zheng, M., Pan, J., Bai, Y., & Liang, C. (2020). Effects of typhoons on surface Seawater pCO2 and air-sea CO2 fluxes in the Northern South China sea. Journal of Geophysical Research Oceans, 125(8), e2020JC016258.

    Article  Google Scholar 

  • Zhu, T., & Zhang, D. L. (2006). The impact of the storm-induced SST cooling on hurricane intensity. Advances in Atmospheric Sciences, 23(1), 14–22.

    Article  Google Scholar 

Download references

Acknowledgements

Present work is a part of ISRO TDP. First author is thankful to Group Head, MASD and Dean (A), IIRS for providing support to carry out the present research. The cyclone track data obtained from IMD (https://rsmcnewdelhi.imd.gov.in/), GHRSST data from (https://podaac.jpl.nasa.gov/dataset/MW_IR_OI-REMSS-L4-GLOB-v5.0), SSHA data from AVISO (https://www.aviso.altimetry.fr/en/home.html), wind field from ASCAT (https://las.incois.gov.in/), in situ data from RAMA (https://www.pmel.noaa.gov/tao/drupal/disdel/) and ARGO floats (https://www.coriolis.eu.org/Observing-the-Ocean/ARGO) are gratefully acknowledged. The authors would like to thank the anonymous reviewers and the editor for the constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachiko Mohanty.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, S., Bhadoriya, V.S. & Chauhan, P. Upper Ocean Response to The Passage of Cyclone Tauktae in The Eastern Arabian Sea Using In Situ and Multi-Platform Satellite Data. J Indian Soc Remote Sens 51, 307–320 (2023). https://doi.org/10.1007/s12524-022-01621-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1007/s12524-022-01621-9

Keywords