Abstract
As memetic algorithms (MA) are a crossbreed between local searchers and evolutionary algorithms (EA) spreading of computational resources between evolutionary and local search is a key issue for a good performance, if not for success at all. This paper summarises and continues previous work on a general cost-benefit-based adaptation scheme for the choice of local searchers (memes), the frequency of their usage, and their search depth. This scheme eliminates the MA strategy parameters controlling meme usage, but raises new ones for steering the adaptation itself. Their impact is analysed and it will be shown that in the end the number of strategy parameters is decreased significantly as well as their range of meaningful values. In addition to this the number of fitness evaluations is reduced drastically. Both are necessary prerequisites for many practical applications as well as for the acceptance of the method by practitioners. Although the introduced framework is tailored to EAs producing more than one offspring per mating, it is also suited for those with only one child per pairing. So there are no preconditions to the EA for the described adaptation scheme to be applied.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Auger A, Hansen N (2005) Performance evaluation of an advanced local search evolutionary algorithm. In: Conference proceedings of IEEE congress on evolutionary computation, CEC 2005, pp 1777–1784
Auger A, Hansen N (2005) A restart CMA evolution strategy with increasing population size. In: Conference proceedings of IEEE congress on evolutionary computation, CEC 2005, pp 1769–1776
Bader-El-Den M, Poli R, Fatima S (2009) Evolving timetabling heuristics using a grammar-based genetic programming hyper-heuristic framework. J Memet Comput 1(3): 205–219
Bäck T (1992) GENEsYs 1.0. http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/genetic/ga/systems/genesys/0.html. Accessed 11 Aug 2009
Bambha NK, Bhattacharyya SS, Zitzler E, Teich J (2004) Systematic integration of parameterized local search into evolutionary algorithms. IEEE Trans Evolut Comput 8(2): 137–155
Blume C (1991) GLEAM—a system for intuitive learning. In: Schwefel H-P, Männer R (eds) Conference proceedings of PPSN I, LNCS 496. Springer, Berlin, pp 48–54
Blume C, Gerbe M (1994) Deutliche Senkung der Produktionskosten durch Optimierung des Ressourceneinsatzes. In: atp, vol 36(5), Oldenbourg Verlag, München, pp 25–29 (in German)
Blume C, Jakob W (2002) GLEAM—an evolutionary algorithm for planning and control based on evolution strategy. In: Cantú-Paz E (ed) Conference proceedings of GECCO 2002, LBP, pp 31–38
Blume C, Jakob W (2009) GLEAM - General Learning Evolutionary Algorithm and Method: ein Evolutionärer Algorithmus und seine Anwendungen. (in German), vol. 32 of Schriftenreihe des Instituts für Angewandte Informatik - Automatisierungstechnik. KIT Scientific Publishing, Karlsruhe
Box MJ (1965) A new method of constrained optimization and a comparison with other methods. Comput J 8: 42–52
Burke E, Kendall G, Newall J, Hart E, Ross P, Schulenberg S (2003) Hyper-heuristics: an emerging direction in modern search technology. In: Glover F, Kochenberg GA (eds) Handbook of metaheuristics. Kluwer, Dordrecht, pp 457–474
Caponio A, Cascella GL, Neri F, Salvatore N, Sumner M (2007) Fast adaptive memetic algorithm for online and offline control design of PMSM drives. IEEE Trans Syst Man Cybern Part B 37(1): 28–41
Davis, L (eds) (1991) Handbook of genetic algorithms. Van Nostrand Reinhold, NY
Eiben AE, Hinterding R, Michalewicz Z (1999) Parameter control in evolutionary algorithms. IEEE Trans Evolut Comput 3(2): 124–141
Gruau F, Whitley D (1993) Adding learning to the cellular development of neural networks: evolution and the Baldwin effect. Evolut Comput 1(3): 213–233
Gorges-Schleuter M (1990) Genetic algorithms and population structures—a massively parallel algorithm. Dissertation, Department of Computer Science, University of Dortmund, Germany
Gorges-Schleuter M (1998) A comparative study of global and local selection in evolution strategies. In: Eiben AE, Bäck T, Schoenauer M, Schwefel H-P (eds) Conference proceedings of PPSN V, LNCS 1498. Springer, Berlin, pp 367–377
Gorges-Schleuter M et al (1999) An analysis of local selection in evolution strategies. In: Banzhaf W (eds) Conference proceedings of GECCO 1999. Morgan Kaufmann, San Francisco, pp 847–854
Hart WE (1994) Adaptive global optimization with local search. Dissertation, University of California, USA
Hart WE, Krasnogor N, Smith JE (2004) Editorial introduction. Evolut Comput 12(3):v–vi (special issue on Memetic Algorithms)
Hart WE, Krasnogor N, Smith JE (eds) (2004) Recent advances in memetic algorithms. In: Studies in fuzziness and soft computing, vol 166, Springer
Hansen B (2006) Compilation of results on the 2005 CEC benchmark function set. CoLab, Institute of Computational Science, ETH Zurich, Technical Report. http://www3.ntu.edu.sg/home/epnsugan/index_fileq/CEC-05/compareresults.pdf. Accessed 18 Aug 2009
Jakob W et al (2002) HyGLEAM—an approach to generally applicable hybridization of evolutionary algorithms. In: Merelo JJ (eds) Conference proceedings of PPSN VII, LNCS 2439. Springer, Berlin, pp 527–536
Jakob W, Blume C, Bretthauer G (2004) Towards a generally applicable self-adapting hybridization of evolutionary algorithms. In: Conference proceedings of GECCO 2004, LNCS 3102, Springer, Berlin, pp 790–791 and LBP
Jakob W et al (2006) Towards an adaptive multimeme algorithm for parameter optimisation suiting the engineers’ needs. In: Runarsson TP (eds) Conference proceedings of PPSN IX, LNCS 4193. Springer, Berlin, pp 132–141
Jakob W et al (2008) A cost-benefit-based adaptation scheme for multimeme algorithms. In: Jakob W (eds) Conference proceedings of parallel processing and applied mathematics 2007. Springer, LNCS 4967, pp 509–519
Jakob W, Quinte A, Stucky K-U, Süß W (2008) Fast multi-objective scheduling of jobs to constrained resources using a hybrid evolutionary algorithm. In: Rudolph G (eds) Conference proceedings of PPSN X, LNCS 5199. Springer, Berlin, pp 1031–1040
Krasnogor N, Smith JE (2001) Emergence of profitable search strategies based on a simple inheritance algorithm. In: Conference proceedings of GECCO 2001, M. Kaufmann, San Francisco, pp 432–439
Krasnogor N, Blackburne BP, Burke EK, Hirst JD (2002) Multimeme algorithms for protein structure prediction. In: Conference proceedings of PPSN VII, LNCS 2439, Springer, Berlin, pp 769–778, citation: p 772
Krasnogor N (2002) Studies on the theory and design space of memetic algorithms. Dissertation, University West of England, UK
Krasnogor N, Smith J (2005) A tutorial for competent memetic algorithms: model, taxonomy, and design issues. IEEE Trans Evolut Comput 5(9): 474–488
Law NL, Szeto KY (2007) Adaptive genetic algorithm with mutation and crossover matrices. In: Veloso MM (ed) Conference proceedings of IJCAI-07, pp 2330–2333
Land MWS (1998) Evolutionary algorithms with local search for combinatorial optimization. Dissertation, University of California, USA
Lozano M, Herrera F, Krasnogor N, Molina D (2004) Real-coded memetic algorithms with crossover hill-climbing. Evolut Comput 12(2): 273–302
Meuth R, Lim MH, Ong YS, Wunsch DC II (2009) A proposition on memes and meta-memes in computing for high-order learning. J Memet Comput 1(2): 85–100
Nelder JA, Mead RA (1965) Simplex method for function minimization. Comput J 7: 308–313
Neri F, Tirronen V, Kärkkäinen T, Rossi T (2007) Fitness diversity based adaptation in multimeme algorithms: a comparative study. In: Conference proceedings of IEEE congress on evolutionary computing, CEC 2007, pp 2374–2381
Neri F, Toivanen J, Cascella GL, Ong YS (2007) An adaptive multimeme algorithm for designing HIV multidrug therapies. IEEE/ACM Trans Comput Biol Bioinform 4(2): 264–278
Neri F, Tirronen V (2008) On memetic differential evolution frameworks: a study of advantages and limitations in hybridization. In: Conference proceedings of IEEE congress on evolutionary computing, CEC 2008, pp 2135–2142
Neri F, Tirronen V (2009) Scale factor local search in differential evolution. J Memet Comput 1(2): 153–171
Nguyen QH, Ong YS, Krasnogor N (2007) A study on design issues of memetic algorithm. In: Conference proceedings of IEEE congress on evolutionary computing, CEC 2007, pp 2390–2397
Noman N, Iba H (2008) Accelerating differential evolution using an adaptive local search. IEEE Trans Evolut Comput 12(1): 107–125
Ong YS, Keane AJ (2004) Meta-Lamarckian learning in memetic algorithms. IEEE Trans Evolut Comput 8(2): 99–110
Ong YS, Lim MH, Zhu N, Wong KW (2006) Classification of adaptive memetic algorithms: a comparative study. IEEE Trans Syst Man Cybern Part B 36(1): 141–152
Orvosh D, Davis L (1993) Shall we repair? Genetic algorithms, combinatorial optimization, and feasibility constraints. In: Forrest S (ed) Conference proceedings of Morgan Kaufmann, San Mateo, CA, p 650
Posik P (2005) Real-parameter optimization using the mutation step co-evolution. In: Conference proceedings of IEEE congress on evolutionary computing, CEC 2005, pp 872–879
Rosenbrock HH (1960) An automatic method for finding the greatest or least value of a function. Comput J 3: 175–184
Schwefel H-P (1995) Evolution and optimum seeking. Wiley, New York
Smith JE (2003) Co-evolving memetic algorithms: a learning approach to robust scalable optimisation. In: Conference proceedings of IEEE congress on evolutionary computing, CEC 2003, pp 498–505
Smith JE et al (2008) Self-adaptation in evolutionary algorithms for combinatorial optimisation. In: Cotta C (eds) Adaptive and multilevel metaheuristics, SCI 136. Springer, Berlin, pp 31–57
Sudholt D (2009) The impact of parameterization in memetic evolutionary algorithms. Theor Comput Sci. doi:10.1016/j.tcs.2009.03.003
Suganthan PN, Hansen N, Liang JJ, Deb K, Chen Y-P, Auger A, Tiwari S (2005) Problem definition and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Technical report, Nanyang Technical University, Singapore and KanGAL Technical Report #2005005, IIT Kanpur, India. Available at http://www.ntu.edu.sg/home/epnsugan
Szeto KY, Zhang J (2005) Adaptive genetic algorithm and quasi-parallel genetic algorithm: application to low-dimensional physics. In: Conference proceedings of large-scale scientific computing (LSSC 2005), LNCS 3743, Springer, Berlin, pp 189–196
Takahara S, Kusumoto Y, Miyamoto S (2001) An adaptive meta-heuristic approach using partial optimization to non-convex polygons allocation problem. In: Conference proceedings of fuzzy systems 2001, IEEE, vol 3, pp 1191–1194
Tirronen V, Neri F (2009) Differential evolution with fitness diversity self-adaptation. In: Chiong R (eds) Nature-inspired algorithms for optimisation, SCI 193. Springer, Berlin, pp 199–234
Whitley D, Gordon V, Mathias K et al (1994) Lamarckian evolution, the Baldwin effect and function optimization. In: Davidor Y (eds) Conference proceedings of PPSN III, LNCS 866. Springer, Berlin, pp 6–14
Yang J-M, Kao C-Y (2000) Integrating adaptive mutations and family competition into genetic algorithms as function optimizer. Soft Comput 4(2): 89–102
Zitzler E, Teich J, Bhattacharyya SS (2000) Optimizing the efficiency of parameterized local search within global search: a preliminary study. In: Conference proceedings of IEEE congress on evolutionary computing, CEC 2000, pp 365–372
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jakob, W. A general cost-benefit-based adaptation framework for multimeme algorithms. Memetic Comp. 2, 201–218 (2010). https://doi.org/10.1007/s12293-010-0040-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12293-010-0040-9