[go: up one dir, main page]

Skip to main content
Log in

Target identification for biologically active small molecules using chemical biology approaches

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

The identification and validation of the targets of biologically active molecules is an important step in the field of chemical biology. While recent advances in proteomic and genomic technology have accelerated this identification process, the discovery of small molecule targets remains the most challenging step. A general method for the identification of these small molecule targets has not yet been established. To overcome the difficulty in target identification, new technology derived from the fields of genomics, proteomics, and bioinformatics has been developed. To date, pull-down methods using small molecules immobilized on a solid support followed by mass spectrometry have been the most successful approach. Here, we discuss current procedures for target identification. We also review the most recent target identification approaches and present several examples that illustrate advanced target identification technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Austin CP, Brady LS, Insel TR, Collins FS (2004) NIH molecular libraries initiative. Science 306:1138–1139

    Article  CAS  PubMed  Google Scholar 

  • Axelrod M, Ou Z, Brett LK, Zhang L, Lopez ER, Tamayo AT, Gordon V, Ford RJ, Williams ME, Pham LV, Weber MJ, Wang ML (2014) Combinatorial drug screening identifies synergistic co-targeting of Bruton’s tyrosine kinase and the proteasome in mantle cell lymphoma. Leukemia 28:407–410

    Article  CAS  PubMed  Google Scholar 

  • Carson EE (2010) Natural products as chemical probes. ACS Chem Biol 5:639–653

    Article  Google Scholar 

  • Cha PH, Cho YH, Lee SK, Lee JH, Jeong WJ, Moon BS, Yun JH, Yang JS, Choi S, Yoon J, Kim HY, Kim MY, Kaduwal S, Lee W, Min DS, KimH Han G, Choi KY (2016) Small-molecule binding of the axin RGS domain promotes β-catenin and Ras degradation. Nat Chem Biol. doi:10.1038/nchembio.2103

    PubMed  Google Scholar 

  • Chernobrovkin A, Marin-Vicente C, Visa N, Zubarev RA (2015) Functional Identification of Target by Expression Proteomics (FITExP) reveals protein targets and highlights mechanisms of action of small molecule drugs. Sci Rep 5:1–9

    Article  Google Scholar 

  • Cho YS, Kwon HJ (2012) Identification and validation of bioactive molecule target through phenotypic screening. Bioorg Med Chem 20:1922–1928

    Article  CAS  PubMed  Google Scholar 

  • Chou DHC, Vetere A, Choudhary A, Scully SS, Schenone M, Ting A, Gomez R, Burns SM, Lundh M, Vital T, Comer E, Faloon PW, Dancik V, Ciarlo C, Paulk J, Dai M, Reddy C, Sun H, Young M, Donato N, Jaffe J, Clemons PA, Palmer M, Carr SA, Svjreiber SL, Wagner BK (2015) kinase-independent small-molecule inhibition of JAK-STAT signaling. J Am Chem Soc 137:7929–7934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crews CM, Splittgerber U (1999) Chemical genetics: exploring and controlling cellular processes with chemical probes. Trend in Biochem Sci 24:317–320

    Article  CAS  Google Scholar 

  • Dadvar P, Kovanich D, Folkers GE, Rumpel K, Raijmakers R, Heck AJ (2009) Phosphatidylethanolamine-binding proteins, including RKIP, exhibit affinity for phosphodiesterase-5 inhibitors. Chem Bio Chem 10:2654–2662

    Article  CAS  PubMed  Google Scholar 

  • Dückert H, Pries V, Khedkar V, Menninger S, Bruss H, Bird AW, Maliga Z, Brockmeyer A, Janning P, Hyman A, Grimme S, Schürmann M, Preut H, Hübel K, Ziegler S, Kumar K, Waldmann H (2012) Natural product–inspired cascade synthesis yields modulators of centrosome integrity. Nat Chem Biol 8:179–184

    Article  Google Scholar 

  • Futamura Y, Muri M, Osada H (2013) Target identification of small molecules based on chemical biology approaches. Mol BioSyst 9:897–914

    Article  CAS  PubMed  Google Scholar 

  • Galloway WRJD, Isidro-Llobet A, Spring DR (2010) Diversity-oriented synthesis as a tool for the discovery of novel biologically active small molecules. Nature Comm 1:80

    Article  Google Scholar 

  • Hall DA, Ptacek J, Snyder M (2007) Protein microarray technology. Mech Ageing Dev 128:161–167

    Article  CAS  PubMed  Google Scholar 

  • Henzler-Wildman K, Kern D (2007) Dynamic personalities of proteins. Nature 450:964–972

    Article  CAS  PubMed  Google Scholar 

  • Hirota T, Lee JW, St John PC, Sawa M, Iwaisako K, Noguchi T, Pongsawakul PY, Sonntag T, Welsh DK, Brenner DA, Doyle FJ, Schultz PG, Kay SA (2012) Identification of small molecule activators of cryptochrome. Science 337:1094–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoelder S, Clarke PA, Workman P (2012) Discovery of small molecule cancer drugs: successes, challenges and opportunities. Mol. Oncology 6:155–176

    Article  CAS  Google Scholar 

  • Hong JY (2011) Role of natural product diversity in chemical biology. Curr Opin Chem Biol 15:350–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Zhu H, Haggarty SJ, Spring DR, Hwang H, Jin F, Snyder M, Schreiber SL (2004) Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips. Proc Nat Acad Sci USA 101:16594–16599

    Article  CAS  Google Scholar 

  • Inglese J, Johnson RL, Simeonov A, Menghang X, Zheng W, Austin CP, Auld DS (2007) High-throughput screening assays for the identification of chemical probes. Nature Chem Biol 3:466–479

    Article  CAS  Google Scholar 

  • Johnson K, Zhu S, Tremblay MS, Payette JN, Wang J, Bouchez LC, Meeusen S, Althage A, Cho CY, Wu X, Schultz PG (2012) A stem cell-based approach to cartilage repair. Science 336(6082):717–721

    Article  CAS  PubMed  Google Scholar 

  • Jung HJ, Kwon HJ (2015) Target deconvolution of bioactive small molecules: the heart of chemical biology and drug discovery. Arch Pharmacal Res 38(9):1627–1641

    Article  CAS  Google Scholar 

  • Jung HJ, Shim JS, Lee J, Song YM, Park KC, Choi SH, Kim ND, Yoon JH, Mungai PT, Schumacker PT, Kwon HJ (2010) Terpestacin inhibits tumor angiogenesis by targeting UQCRB of mitochondrial complex III and suppressing hypoxia-induced reactive oxygen species production and cellular oxygen sensing. J Biol Chem 285:11584–11594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawatanin M, Osada H (2014) Affinity-based target identification for bioactive small molecules. Med Chem Comm 5:277–287

    Article  Google Scholar 

  • Khersonsky SM, Jung DW, Kang TW, Walsh DP, Moon HS, Jo H, Jacobson EM, Shetty V, Neubert TA, Chang YT (2003) Facilitated forward chemical genetics using a tagged triazine library. J Am Chem Soc 125(39):11804–11805

    Article  CAS  PubMed  Google Scholar 

  • Kim YK, Lee JS, Bi X, Ha HH, Ng SH, Ahn YH, Lee JJ, Wagner BK, Clemons PA, Chang YT (2011) Binding of fluorophores to proteins depends on the cellular environment. Angew Chem Int Ed 50:2761–2763

    Article  CAS  Google Scholar 

  • Kitambi SS, Toledo EM, Usoskin D, Wee S, Harisankar A, Svensson R, Sigmundsson K, Kalderén C, Niklasson M, Kundu S, Aranda S, Westermark B, Uhrbom L, Andäng M, Damberg P, Nelander S, Arenas E, Artursson P, Walfridsson J, Forsberg Nilsson K, Hammarström LG, Ernfors P (2014) Vulnerability of glioblastoma cells to catastrophic vacuolization and death induced by a small molecule. Cells 157:313–328

    Article  CAS  Google Scholar 

  • Kumar NS, Young RN (2009) Design and synthesis of all-in-one 3-(1,1-difluoroprop-2-ynyl)-3H-diazirin-3-yl functional group for photo-affinity labeling. Bioorg Med Chem 17:5388–5395

    Article  CAS  PubMed  Google Scholar 

  • Kwon HJ (2006) Discovery of new small molecules and targets towards angiogenesis via chemical genomics approach. Curr Drug Targets 7:397–405

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Bogyo M (2013) Target deconvolution techniques in modern phenotypic profiling. Curr Opin Chem Biol 17:118–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Nam Y, Koo JY, Lim D, Park J, Ock J, Kim J, Suk K, Park SB (2014) A small molecule binding HMGB1 and HMGB2 inhibits microglia-mediated neuroinflammation. Nature Chem Biol 10:1055–1060

    Article  CAS  Google Scholar 

  • Lehár J, Stockwell BR, Giaever G, Nislow G (2008) Combination chemical genetics. Nature Chem Biol 4:674–681

    Article  Google Scholar 

  • Lomenick B, Hao R, Jonai N, Chin RM, Aghajan M, Warburton S, Wang J, Wu RP, Gomez F, Loo JA, Wohlschlegel JA, Vondriska TM, Pelletier J, Herschman HR, Clardy J, Clarke CF, Huang J (2009) Target identification using drug affinity responsive target stability (DARTS). Proc Natl Acad Sci USA 106:21984–21989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lomenick B, Olsen RW, Huang J (2011) Identification of direct protein targets of small molecules. ACS Chem Biol 6:34–46

    Article  CAS  PubMed  Google Scholar 

  • McPherson M, Yang Y, Hammond PW, Kreider BL (2002) Drug receptor identification from multiple tissues using cellular-derived mRNA display libraries. Chem Biol 9:691–698

    Article  CAS  PubMed  Google Scholar 

  • Mizuhara T, Oishi S, Ohno H, Shimura K, Matsuoka M, Fujii N (2013) Design and synthesis of biotin- or alkyne-conjugated photoaffinity probes for studying the target molecules of PD 404182. Bioorg Med Chem 21:2079–2087

    Article  CAS  PubMed  Google Scholar 

  • Newman RH, Zhang J (2008) Small molecules and chemical tools at the interface. Nature Chem Biol 4:382–386

    Article  CAS  Google Scholar 

  • Okoye-Okafor UC, Bartholdy B, Cartier J, Gao EN, Pietrak B, Rendina AR, Rominger C, Quinn C, Smallwood A, Wiggall KJ, Reif AJ, Schmidt SJ, Qi H, Zhao H, Joberty G, Faelth-Savitski M, Bantscheff M, Drewes G, Duraiswami C, Brady P, Groy A, Narayanagari S-R, Antony-Debre I, Mitchell K, Wang HR, Kao Y-R, Christopeit M, Carvajal L, Barreyro L, Paietta E, Makishima H, Will B, Concha N, Adams ND, Schwartz B, McCabe MT, Maciejewski J, Verma A, Steidl U (2015) New IDH 1 mutant inhibitors for treatment of acute myeloid leukemia. Nat Chem Biol 11:878–886

    Article  CAS  PubMed  Google Scholar 

  • Ong SE, Schenone M, Margolin AA, Li X, Do K, Doud MK, Mani DR, Kuai L, Wang X, Wood JL, Tolliday NJ, Koehler AN, Marcaurelle LA, Golub TR, Gould RJ, Schreiber SL, Carr SA (2009) Identifiying the proteins to which small-molecule probes and drugs bind in cells. Proc Nat Acad Sci 106:4617–4622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pace CN, McGrath T (1980) Substrate stabilization of lysozyme to thermal and guanidine hydrochloride denaturation. J Biol Chem 255:3862–3865

    CAS  PubMed  Google Scholar 

  • Park J, Oh S, Park SB (2012) Discovery and target identification of an anti-proliferative agent in live cells using fluorescence difference in two-dimensional gel electrophoresis. Angew Chem Int Ed 22:5447–5451

    Article  Google Scholar 

  • Park H, Koo JY, Srikanth YVV, Oh S, Lee J, Park J, Park SB (2016) Nonspecific protein labeling of photoaffinity linker correlates with their molecular shapes in living cells. Chem Comm 52:5828–5831

    Article  CAS  PubMed  Google Scholar 

  • Raj L, Ide T, Gurkar AU, Foley M, Schenone M, Li X, Tolliday NJ, Golub TR, Carr SA, Shamji AF, Stern AM, Mandinova A, Schreiber SL, Lee SW (2011) Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 475:231–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roemer T, Davies J, Giaever G, Nislow C (2012) Bugs, drugs and chemical biology. Nature Chem Biol 8:46–56

    Article  CAS  Google Scholar 

  • Sadakane Y, Hatanaka Y (2006) Photochemical fishing approaches for identifying target proteins and elucidating the structure of a ligand-binding region using carbene-generated photoreactive probes. Anal Sci 22:209–218

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Murata A, Shirakawa T, Uesugi M (2010) Biochemical Target Isolation for Novices: affinity-Based Strategies. Chem Biol 17:616–623

    Article  CAS  PubMed  Google Scholar 

  • Schenone M, Dančík V, Wagner VK, Clemons PA (2013) Target identification and mechanism of action in chemical biology and drug discovery. Nature Chem Biol 9:232–240

    Article  CAS  Google Scholar 

  • Schulz MM, Reisen F, Zgraggen S, Fischer S, Yuen D, Kang GJ, Chen L, Schneider G, Detmar M (2012) Phenotype-based high-content chemical library screening identifies statins as inhibitors of in vivo lymphangiogenesis. Proc Nat Acad Sci 109:E2665–E2674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiheido H, Terada F, Tabata N, Hayakawa N, Matsumura H, Takashima H, Ogawa Y, Du W, Yamada T, Shoji M, Sugai T, Doi N, Iijima S, Hattori Y, Yanagawa H (2012) A phthalimide derivative that inhibits centrosomal clustering is effective on multiple myeloma. PLoS One 7:e38878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shim JS, Lee J, Park H-J, Park S-J, Kwon HJ (2004) A New Curcumin Derivative, HBC, Interferes with the Cell Cycle Progression of Colon Cancer Cells via Antagonization of the Ca2+/Calmodulin Function. Chem Biol 11:1455–1463

    Article  CAS  PubMed  Google Scholar 

  • Sleno L, Emili A (2008) Proteomic methods for drug target discovery. Curr Opin Chem Biol 12:46–54

    Article  CAS  PubMed  Google Scholar 

  • Smith E, Collins I (2015) Photoaffinity labeling in target- and binding-site identification. Future Med Chem 7:159–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stockwell B (2000) Chemical genetics: ligand-based discovery of gene function. Nature Rev Gene 1:116–125

    Article  CAS  Google Scholar 

  • Stockwell BR, Haggarty SJ, Schreiber SL (1999) High-throughput screening of small molecules in miniaturized mammalian cell-based assays involving post-translational modifications. Chem Biol 6:71–83

    Article  CAS  PubMed  Google Scholar 

  • Su Y, Ge J, Zhu B, Yao S (2013) Target identification of biologically active small molecules via in situ methods. Curr Opin Chem Biol 17:768–775

    Article  CAS  PubMed  Google Scholar 

  • Sumranjit J, Chung SJ (2013) Recent Advances in Target Characterization and Identification by Photoaffinity Probes. Molecules 18:10425–10451

    Article  CAS  PubMed  Google Scholar 

  • Takakusagi Y, Takakusagi K, Sugawara F, Sakaguchi K (2010) Use of phage display technology for the determination of the targets phage display technology for the determination of the targets for small-molecule therapeutics. Exp Opin Drug Discovery 5:361–389

    Article  CAS  Google Scholar 

  • Terstappen GC, Schlüpen C, Raggiaschi R, Gaviraghi G (2007) Target deconvolution strategies in drug discovery. Nature Rev Drug Discovery 6:891–903

    Article  CAS  Google Scholar 

  • Theodoropoulos PC, Gonzales SS, Winterton SE, Rodriguez-Navas C, McKnight JS, Morlock LK, Hanson JM, Cross B, Owen AE, Duan Y, Moreno JR, Lemoff A, Mirzaei H, Posner BA, Williams NS, Ready JM, Nijhawan D (2016) Discovery of tumor-specific irreversible inhibitors of stearoyl CoA desaturase. Nat Chem Biol 12:218–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Dorst B, Mehta J, Rouah-Martin E, De Coen W, Blust R, Robbens J (2011) The identification of cellular targets of 17beta estradiol using a lytic (T7) cDNA phage display approach. Toxicol In Vitro 25:388–393

    Article  PubMed  Google Scholar 

  • Zhu S, Wurdak H, Wang J, Lyssiotis CA, Peters EC, Cho CY, Wu X, Schultz PG (2009) A small molecule primes embryonic stem cells for differentiation. Cell Stem Cell 4:416–426

    Article  CAS  PubMed  Google Scholar 

  • Ziegler S, Pries V, Hedberg C, Waldmann H (2013) Target identification for small molecules: finding the needle in the haystack. Angew Chem Int Ed 52:2744–2792

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by research fund of Korea institute of Science and Technology (2Z04371).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Wook Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Lee, J.W. Target identification for biologically active small molecules using chemical biology approaches. Arch. Pharm. Res. 39, 1193–1201 (2016). https://doi.org/10.1007/s12272-016-0791-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-016-0791-z

Keywords

Navigation