[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Mechano-chronotropic Unloading During the Acute Phase of Myocardial Infarction Markedly Reduces Infarct Size via the Suppression of Myocardial Oxygen Consumption

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The oxygen supply-demand imbalance is the fundamental pathophysiology of myocardial infarction (MI). Reducing myocardial oxygen consumption (MVO2) in acute MI (AMI) reduces infarct size. Since left ventricular (LV) mechanical work and heart rate are major determinants of MVO2, we hypothesized that the combination of LV mechanical unloading and chronotropic unloading during AMI can reduce infarct size via synergistic suppression of MVO2. In a dog model of ischemia-reperfusion, as we predicted, the combination of mechanical unloading by Impella and bradycardic agent, ivabradine (IVA), synergistically reduced MVO2. This was translated into the striking reduction of infarct size with Impella + IVA administered 60 min after the onset of ischemia compared to no treatment (control) and Impella groups (control 56.3 ± 6.5, Impella 39.9 ± 7.4 and Impella + IVA 23.7 ± 10.6%, p < 0.001). In conclusion, Impella + IVA during AMI reduced infarct size via marked suppression of MVO2. The mechano-chronotropic unloading may serve as a powerful therapeutic option for AMI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AMI:

Acute myocardial infarction

AP:

Arterial pressure

CS:

Coronary sinus

EDPVR:

End-diastolic pressure-volume relationship

EDV:

End-diastolic volume

ESPVR:

End-systolic pressure-volume relationship

ESV:

End-systolic volume

HR:

Heart rate

IVA:

Ivabradine

LAD:

Left anterior descending coronary artery

LCX:

Left circumflex coronary artery

LAP:

Left atrial pressure

LV:

Left ventricle or left ventricular

LVAD:

Left ventricular assist device

LVP:

Left ventricular pressure

LVV:

Left ventricular volume

MAP:

Mean arterial pressure

MI:

Myocardial infarction

MVO2 :

Myocardial oxygen consumption

PCI:

Percutaneous coronary intervention

PV:

Pressure-volume

PVA:

Pressure-volume area

RAP:

Right atrial pressure

References

  1. Heusch, G. (2016). Myocardial ischemia: lack of coronary blood flow or myocardial oxygen supply/demand imbalance? Circulation Research, 119, 194–196. https://doi.org/10.1161/CIRCRESAHA.116.308925.

    Article  CAS  PubMed  Google Scholar 

  2. Rentrop, K. P., & Feit, F. (2015). Reperfusion therapy for acute myocardial infarction: concepts and controversies from inception to acceptance. American Heart Journal, 170, 971–980. https://doi.org/10.1016/j.ahj.2015.08.005.

    Article  PubMed  Google Scholar 

  3. Roe, M. T., Messenger, J. C., Weintraub, W. S., Cannon, C. P., Fonarow, G. C., Dai, D., Chen, A. Y., Klein, L. W., Masoudi, F. A., McKay, C., Hewitt, K., Brindis, R. G., Peterson, E. D., & Rumsfeld, J. S. (2010). Treatments, trends, and outcomes of acute myocardial infarction and percutaneous coronary intervention. Journal of the American College of Cardiology, 56, 254–263. https://doi.org/10.1016/j.jacc.2010.05.008.

    Article  PubMed  Google Scholar 

  4. Rogers WJ, Frederick PD, Stoehr E, Canto JG, Ornato JP, Gibson CM, Pollack CV Jr, Gore JM, Chandra-Strobos N, Peterson ED, French WJ (2008) Trends in presenting characteristics and hospital mortality among patients with ST elevation and non-ST elevation myocardial infarction in the National Registry of Myocardial Infarction from 1990 to 2006. American Heart Journal 156: 1026–1034. doi: https://doi.org/10.1016/j.ahj.2008.07.030.

  5. Pfeffer, M. A., & Braunwald, E. (1990). Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation, 81, 1161–1172. https://doi.org/10.1161/01.CIR.81.4.1161.

    Article  CAS  Google Scholar 

  6. Müller, K. D., Sass, S., Gottwik, M. G., & Schaper, W. (1982). Effect of myocardial oxygen consumption on infarct size in experimental coronary artery occlusion. Basic Research in Cardiology, 77, 170–181. https://doi.org/10.1007/BF01908170.

    Article  PubMed  Google Scholar 

  7. Kapur, N. K., Paruchuri, V., Urbano-Morales, J. A., Mackey, E. E., Daly, G. H., Qiao, X., Pandian, N., Perides, G., & Karas, R. H. (2013). Mechanically unloading the left ventricle before coronary reperfusion reduces left ventricular wall stress and myocardial infarct size. Circulation, 128, 328–336. https://doi.org/10.1161/CIRCULATIONAHA.112.000029.

    Article  PubMed  Google Scholar 

  8. Tamareille, S., Achour, H., Amirian, J., Felli, P., Bick, R. J., Poindexter, B., Geng, Y. J., Barry, W. H., & Smalling, R. W. (2008). Left ventricular unloading before reperfusion reduces endothelin-1 release and calcium overload in porcine myocardial infarction. The Journal of Thoracic and Cardiovascular Surgery, 136, 343–351. https://doi.org/10.1016/j.jtcvs.2008.01.021.

    Article  PubMed  Google Scholar 

  9. Suga, H., Hisano, R., Hirata, S., Hayashi, T., Yamada, O., & Ninomiya, I. (1983). Heart rate-independent energetics and systolic pressure-volume area in dog heart. The American Journal of Physiology, 244, H206–H214. https://doi.org/10.1152/ajpheart.1983.244.2.H206.

    Article  CAS  PubMed  Google Scholar 

  10. Suga, H., Hisano, R., Goto, Y., Yamada, O., & Igarashi, Y. (1983). Effect of positive inotropic agents on the relation between oxygen consumption and systolic pressure volume area in canine left ventricle. Circulation Research, 53, 306–318. https://doi.org/10.1161/01.RES.53.3.306.

    Article  CAS  PubMed  Google Scholar 

  11. Saku, K., Kakino, T., Arimura, T., Sakamoto, T., Nishikawa, T., Sakamoto, K., Ikeda, M., Kishi, T., Ide, T., & Sunagawa, K. (2016). Total mechanical unloading minimizes metabolic demand of left ventricle and dramatically reduces infarct size in myocardial infarction. PLoS One, 11, e0152911. https://doi.org/10.1371/journal.pone.0152911. eCollection 2016.

  12. Tanaka, N., Nozawa, T., Yasumura, Y., Futaki, S., Hiramori, K., & Suga, H. (1990). Heart-rate-proportional oxygen consumption for constant cardiac work in dog heart. The Japanese Journal of Physiology, 40, 503–521. https://doi.org/10.2170/jjphysiol.40.503.

    Article  CAS  PubMed  Google Scholar 

  13. Burzotta, F., Trani, C., Doshi, S. N., Townend, J., van Geuns, R. J., Hunziker, P., Schieffer, B., Karatolios, K., Møller, J. E., Ribichini, F. L., Schäfer, A., & Henriques, J. P. (2015). Impella ventricular support in clinical practice: collaborative viewpoint from a European expert user group. International Journal of Cardiology, 201, 684–691. https://doi.org/10.1016/j.ijcard.2015.07.065.

    Article  PubMed  Google Scholar 

  14. Borer, J. S., & Le Heuzey, J. Y. (2008). Characterization of the heart rate-lowering action of ivabradine, a selective I(f) current inhibitor. American Journal of Therapeutics, 15, 461–473. https://doi.org/10.1097/MJT.0b013e3181758855.

    Article  PubMed  Google Scholar 

  15. Sakamoto, T., Kakino, T., Sakamoto, K., Tobushi, T., Tanaka, A., Saku, K., Hosokawa, K., Onitsuka, K., Murayama, Y., Tsutsumi, T., Ide, T., & Sunagawa, K. (2015). Changes in vascular properties, not ventricular properties, predominantly contribute to baroreflex regulation of arterial pressure. American Journal of Physiology. Heart and Circulatory Physiology, 308, H49–H58. https://doi.org/10.1152/ajpheart.00552.

    Article  CAS  PubMed  Google Scholar 

  16. Arimura, T., Saku, K., Kakino, T., Nishikawa, T., Tohyama, T., Sakamoto, T., Sakamoto, K., Kishi, T., Ide, T., & Sunagawa, K. (2017). Intravenous electrical vagal nerve stimulation prior to coronary reperfusion in a canine ischemia-reperfusion model markedly reduces infarct size and prevents subsequent heart failure. International Journal of Cardiology, 227, 704–710. https://doi.org/10.1016/j.ijcard.2016.10.074.

    Article  PubMed  Google Scholar 

  17. Saku K, Kakino T, Arimura T, Sunagawa G, Nishikawa T, Sakamoto T, Kishi T, Tsutsui H, Sunagawa K (2018) Total left ventricular mechanical unloading using Impella in myocardial infarction strikingly reduces infarct size, preserves left ventricular function and prevents subsequent heart failure in dogs. Circ Heart Fail. in press.

  18. Colin, P., Ghaleh, B., Monnet, X., Hittinger, L., & Berdeaux, A. (2004). Effect of graded heart rate reduction with ivabradine on myocardial oxygen consumption and diastolic time in exercising dogs. The Journal of Pharmacology and Experimental Therapeutics, 8, 236–240. https://doi.org/10.1124/jpet.103.059717.

    Article  CAS  Google Scholar 

  19. Gardiner SM, Kemp PA, March JE, Bennett T (1995) Acute and chronic cardiac regional haemodynamic effects of the novel bradycardic agent, S16257, in conscious rats. Br j Pharmacol. 115:579–586.doi.org/10.1111/j.1476-5381.1995.tb14971.x.

  20. Achour, H., Boccalandro, F., Felli, P., Amirian, J., Uthman, M., Buja, M., & Smalling, R. W. (2005). Mechanical left ventricular unloading prior to reperfusion reduces infarct size in a canine infarction model. Catheterization and Cardiovascular Interventions, 64, 182–192. https://doi.org/10.1002/ccd.20271.

    Article  PubMed  Google Scholar 

  21. Meyns, B., Stolinski, J., Leunens, V., Verbeken, E., & Flameng, W. (2003). Left ventricular support by catheter-mounted axial flow pump reduces infarct size. Journal of the American College of Cardiology, 41, 1087–1095. https://doi.org/10.1016/S0735-1097(03)00084-6.

    Article  PubMed  Google Scholar 

  22. Engström, A. E., Sjauw, K. D., Baan, J., Remmelink, M., Claessen, B. E., Kikkert, W. J., Hoebers, L. P., Vis, M. M., Koch, K. T., Meuwissen, M. M., Tijssen, J. G., De Winter, R. J., Piek, J. J., & Henriques, J. P. (2011). Long-term safety and sustained left ventricular recovery: long-term results of percutaneous left ventricular support with Impella LP2.5 in ST-elevation myocardial infarction. EuroIntervention, 6, 860–865. https://doi.org/10.4244/EIJV6I7A147.

    Article  PubMed  Google Scholar 

  23. O'Neill, W. W., Schreiber, T., Wohns, D. H., Rihal, C., Naidu, S. S., Civitello, A. B., Dixon, S. R., Massaro, J. M., Maini, B., & Ohman, E. M. (2014). The current use of Impella 2.5 in acute myocardial infarction complicated by cardiogenic shock: results from the USpella Registry. Journal of Interventional Cardiology, 27, 1–11. https://doi.org/10.1111/joic.12080.

    Article  PubMed  Google Scholar 

  24. Yoshitake, I., Hata, M., Sezai, A., Unosawa, S., Wakui, S., Kimura, H., Nakata, K., Hata, H., & Shiono, M. (2012). The effect of combined treatment with Impella(®) and landiolol in a swine model of acute myocardial infarction. Journal of Artificial Organs, 15, 231–239. https://doi.org/10.1007/s10047-012-0640-x.

    Article  CAS  PubMed  Google Scholar 

  25. Kontos, M. C., Diercks, D. B., Ho, P. M., Wang, T. Y., Chen, A. Y., & Roe, M. T. (2011). Treatment and outcomes in patients with myocardial infarction treated with acute β-blocker therapy: results from the American College of Cardiology’s NCDR(®). American Heart Journal, 161, 864–870. https://doi.org/10.1016/j.ahj.2011.01.006.

    Article  PubMed  Google Scholar 

  26. Chen, Z. M., Pan, H. C., Chen, Y. P., Peto, R., Jiang LX, C. R., Xie, J. X., Liu, L. S., & COMMIT (ClOpidogrel and Metoprolol in Myocardial Infarction Trial) collaborative group. (2005). Early intravenous then oral metoprolol in 45,852 patients with acute myocardial infarction: randomized placebo-controlled trial. Lancet, 366, 1622–1632. https://doi.org/10.1016/S0140-6736(05)67661-1.

    Article  CAS  PubMed  Google Scholar 

  27. Calvillo, L., Vanoli, E., Andreoli, E., Besana, A., Omodeo, E., Gnecchi, M., Zerbi, P., Vago, G., Busca, G., & Schwartz, P. J. (2011). Vagal stimulation, through its nicotinic action, limits infarct size and the inflammatory response to myocardial ischemia and reperfusion. Journal of Cardiovascular Pharmacology, 58, 500–507. https://doi.org/10.1097/FJC.0b013e31822b7204.

    Article  CAS  PubMed  Google Scholar 

  28. Dae, M. W., Gao, D. W., Sessler, D. I., Chair, K., & Stillson, C. A. (2002). Effect of endovascular cooling on myocardial temperature, infarct size, and cardiac output in human-sized pigs. American Journal of Physiology. Heart and Circulatory Physiology, 282, H1584–H1591. https://doi.org/10.1152/ajpheart.00980.2001.

    Article  CAS  PubMed  Google Scholar 

  29. Erlinge, D., Götberg, M., Grines, C., Dixon, S., Baran, K., Kandzari, D., & Olivecrona, G. K. (2013). A pooled analysis of the effect of endovascular cooling on infarct size in patients with ST-elevation myocardial infarction. EuroIntervention, 8, 1435–1440. https://doi.org/10.4244/EIJV8I12A217.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Takuya Akashi, Takako Takehara, and the staff of the Center for Disruptive Cardiovascular Medicine, Kyushu University, and the Department of Cardiovascular Medicine, Kyushu University, for the technical support.

Sources of Funding

This work was supported by research and development of supportive device technology for medicine using ICT from Japan Agency for Medical Research and Development of Advanced Measurement and Analysis Systems from Japan Agency for Medical Research and Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keita Saku.

Ethics declarations

Conflict of Interest

K. Sunagawa works in a department endowed by Omron Healthcare Co. and Actelion Pharmaceuticals, Japan, and has received research resources (Impella console and Impella CP® catheters) from Abiomed Inc. K. Saku and T. Kishi work in a department endowed by Omron Healthcare Co. G. Sunagawa, T. Arimura, T. Nishikawa, H. Mannoji, K. Kamada, and K. Abe have nothing to declare. H. Tsutsui received honoraria from Daiichi Sankyo, Inc., Otsuka Pharmaceutical Co., Ltd., Takeda Pharmaceutical Company Limited, Mitsubishi Tanabe Pharma Corporation, Boehringer Ingelheim Japan, Inc., Novartis Pharma K.K., Bayer Yakuhin, Ltd., Bristol-Myers Squibb KK, and Astellas Pharma Inc. and research funding from Actelion Pharmaceuticals Japan, Daiichi Sankyo, Inc. and Astellas Pharma Inc.

Human Subjects/Informed Consent Statement

No human studies were carried out by the authors for this article.

Additional information

Associate Editor Navin Kumar Kapur oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunagawa, G., Saku, K., Arimura, T. et al. Mechano-chronotropic Unloading During the Acute Phase of Myocardial Infarction Markedly Reduces Infarct Size via the Suppression of Myocardial Oxygen Consumption. J. of Cardiovasc. Trans. Res. 12, 124–134 (2019). https://doi.org/10.1007/s12265-018-9809-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-018-9809-x

Keywords

Navigation