[go: up one dir, main page]

Skip to main content
Log in

Cortical Inflammation is Increased in a DSS-Induced Colitis Mouse Model

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

While inflammatory bowel disease (IBD) might be a risk factor in the development of brain dysfunctions, the underlying mechanisms are largely unknown. Here, mice were treated with 5% dextran sodium sulfate (DSS) in drinking water and sacrificed on day 7. The serum level of IL-6 increased, accompanied by elevation of the IL-6 and TNF-α levels in cortical tissue. However, the endotoxin concentration in plasma and brain of mice with DSS-induced colitis showed a rising trend, but with no significant difference. We also found significant activation of microglial cells and reduction in occludin and claudin-5 expression in the brain tissue after DSS-induced colitis. These results suggested that DSS-induced colitis increases systemic inflammation which then results in cortical inflammation via up-regulation of serum cytokines. Here, we provide new information on the impact of colitis on the outcomes of cortical inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hanauer SB. Inflammatory bowel disease: epidemiology, pathogenesis, and therapeutic opportunities. Inflamm Bowel Dis 2006, 12: S3–S9.

    Article  PubMed  Google Scholar 

  2. Sandler RS, Stewart WF, Liberman JN, Ricci JA, Zorich NL. Abdominal pain, bloating, and diarrheain the United States. Dig Dis Sci 2000, 45: 1166–1171.

    Article  CAS  PubMed  Google Scholar 

  3. Zonis S, Pechnick RN, Ljubimov VA, Mahgerefteh M, Wawrowsky K, Michelsen KS, et al. Chronic intestinal inflammation alters hippocampal neurogenesis. J Neuroinflammation 2015, 12: 65.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Kurina LM, Goldacre MJ, Yeates D, Gill LE. Depression and anxiety in people with inflammatory bowel disease. J Epidemiol Community Health 2001, 55: 716.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Villaran RF, Espinosa-Oliva AM, Sarmiento M, De Pablos RM, Arguelles S, Delgado-Cortes MJ, et al. Ulcerative colitis exacerbates lipopolysaccharide-induced damage to the nigral dopaminergic system: potential risk factor in Parkinson`s disease. J Neurochem 2010, 114: 1687–1700.

    Article  CAS  PubMed  Google Scholar 

  6. Yokoyama JS, Wang Y, Schork AJ, Thompson WK, Karch CM, Cruchaga C, et al. Association between genetic traits for immune-mediated diseases and Alzheimer disease. JAMA Neurol 2016, 73: 691.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Chen B, Girgis S, El-Matary W. Childhood autism and eosinophilic colitis. Digestion 2010, 81: 127–129.

    Article  PubMed  Google Scholar 

  8. Heberling CA, Dhurjati PS, Sasser M. Hypothesis for a systems connectivity model of Autism Spectrum Disorder pathogenesis: links to gut bacteria, oxidative stress, and intestinal permeability. Med Hypotheses 2013, 80: 264.

    Article  PubMed  Google Scholar 

  9. Riazi K, Galic MA, Kuzmiski JB, Ho W, Sharkey KA, Pittman QJ. Microglial activation and TNFalpha production mediate altered CNS excitability following peripheral inflammation. Proc Natl Acad Sci U S A 2008, 105: 17151–17156.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Raghavendra V, Tanga FY, Deleo JA. Complete Freunds adjuvant-induced peripheral inflammation evokes glial activation and proinflammatory cytokine expression in the CNS. Eur J Neurosci 2004, 20: 467.

    Article  PubMed  Google Scholar 

  11. Hathaway CA, Appleyard CB, Percy WH, Williams JL. Experimental colitis increases blood-brain barrier permeability in rabbits. Am J Physiol 1999, 276: G1174.

    CAS  PubMed  Google Scholar 

  12. Engelhardt B, Sorokin L. The blood–brain and the blood–cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol 2009: 497–511.

    Article  PubMed  Google Scholar 

  13. Sans M, Kawachi S, Soriano A, Palacin A, Morise Z, Granger D, et al. Brain endothelial adhesion molecule expression in experimental colitis. Microcirculation 2001, 8: 105–114.

    Article  CAS  PubMed  Google Scholar 

  14. Natah SS, Mouihate A, Pittman QJ, Sharkey KA. Disruption of the blood-brain barrier during TNBS colitis. Neurogastroenterol Motil 2005, 17: 433–446.

    Article  CAS  PubMed  Google Scholar 

  15. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 2007, 104: 13780.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Jang SE, Lim SM, Jeong JJ, Jang HM, Lee HJ, Han MJ, et al. Gastrointestinal inflammation by gut microbiota disturbance induces memory impairment in mice. Mucosal Immunol 2017.

  17. Caradonna L, Amati L, Magrone T, Pellegrino NM, Jirillo E, Caccavo D. Enteric bacteria, lipopolysaccharides and related cytokines in inflammatory bowel disease: biological and clinical significance. J Endotoxin Res 2000, 6: 205–214.

    CAS  PubMed  Google Scholar 

  18. Yao YM, Xu CL, Yao FH, Yu Y, Sheng ZY. The pattern of nuclear factor-kappaB activation in rats with endotoxin shock and its role in biopterin-mediated nitric oxide induction. Zhonghua Shao Shang Za Zhi 2006, 22: 405–410.

    CAS  PubMed  Google Scholar 

  19. Kremlev SG, Palmer C. Interleukin-10 inhibits endotoxin-induced pro-inflammatory cytokines in microglial cell cultures. J Neuroimmunol 2005, 162: 71–80.

    Article  CAS  PubMed  Google Scholar 

  20. Zhou Y, Huang X, Zhao T, Qiao M, Zhao X, Zhao M, et al. Hypoxia augments LPS-induced inflammation and triggers high altitude cerebral edema in mice. Brain Behav Immunity 2017, 64: 266–275.

    Article  CAS  Google Scholar 

  21. Sainathan SK, Bishnupuri KS, Aden K, Luo Q, Houchen CW, Anant S, et al. Toll-like receptor-7 ligand imiquimod induces type I interferon and antimicrobial peptides to ameliorate dextran sodium sulfate-induced acute colitis. Inflamm Bowel Dis 2012, 18: 955–967.

    Article  PubMed  Google Scholar 

  22. Håkansson Å1, Tormo-Badia N, Baridi A, Xu J, Molin G, Hagslätt ML, et al. Immunological alteration and changes of gut microbiota after dextran sulfate sodium (DSS) administration in mice. Clin Exp Med 2015, 15: 107–120.

    Article  PubMed  Google Scholar 

  23. Neilly MPJD, Gardiner KR, Kirk SJ, Jennings G, Anderson NH, Elia M, et al. Endotoxaemia and cytokine production in experimental colitis. Br J Surgery 1995, 82: 1479.

    Article  CAS  Google Scholar 

  24. Ghia JE, Blennerhassett P, Kumar-Ondiveeran H, Verdu EF, Collins SM. The vagus nerve: a tonic inhibitory influence associated with inflammatory bowel disease in a murine model. Gastroenterology 2006, 131: 1122–1130.

    Article  PubMed  Google Scholar 

  25. Dammann O, Leviton A. Maternal intrauterine infection, cytokines, and brain damage in the preterm newborn. Pediatr Res 1997, 42: 1.

    Article  CAS  PubMed  Google Scholar 

  26. Fang X, Sun D, Wang Z, Yu Z, Liu W, Pu Y, et al. MiR-30a positively regulates the inflammatory response of microglia in experimental autoimmune encephalomyelitis. Neurosci Bull 2017, 33: 603–615.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Buttini M, Limonta S, Boddeke HW. Peripheral administration of lipopolysaccharide induces activation of microglial cells in rat brain. Neurochem Int 1996, 29: 25.

    Article  CAS  PubMed  Google Scholar 

  28. Carson MJ. Microglia as liaisons between the immune and central nervous systems: Functional implications for multiple sclerosis. Glia 2002, 40: 218–231.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Alvarez JI, Cayrol R, Prat A. Disruption of central nervous system barriers in multiple sclerosis. Biochim Biophys Acta 2011, 1812: 252–264.

    Article  CAS  PubMed  Google Scholar 

  30. Krizanac-Bengez L, Kapural M, Parkinson F, Cucullo L, Hossain M, Mayberg MR, et al. Effects of transient loss of shear stress on blood-brain barrier endothelium: role of nitric oxide and IL-6. Brain Res 2003, 977: 239–246.

    Article  CAS  PubMed  Google Scholar 

  31. Blecharzlang KG, Wagner J, Fries A, Nieminenkelhä M, Rösner J, Schneider UC, et al. Interleukin 6-mediated endothelial barrier disturbances can be attenuated by blockade of the IL6 receptor expressed in brain microvascular endothelial cells. Transl Stroke Res 2018: 1–12.

  32. Moreira AP, Texeira TF, Ferreira AB, Peluzio MC, Alfenas RC. Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. Br J Nutr 2012, 108: 801.

    Article  CAS  PubMed  Google Scholar 

  33. Lee IA, Bae EA, Hyun YJ, Kim DH. Dextran sulfate sodium and 2,4,6-trinitrobenzene sulfonic acid induce lipid peroxidation by the proliferation of intestinal gram-negative bacteria in mice. J Inflamm 2010, 7: 7.

    Article  Google Scholar 

  34. Ito H, Tanabe H, Kawagishi H, Tadashi W, Yasuhiko T, Sugiyama K, et al. Short-chain inulin-like fructans reduce endotoxin and bacterial translocations and attenuate development of TNBS-induced colitis in rats. Dig Dis Sci 2009, 54: 2100–2108.

    Article  PubMed  Google Scholar 

  35. Axelsson LG, Midtvedt T, Bylundfellenius AC. The role of intestinal bacteria, bacterial translocation and endotoxin in dextran sodium sulphate-induced colitis in the mouse. Microb Ecol Health Dis 1996, 9: 225–237.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. TM Zhang of Academy of Military Medical Sciences for helpful comments. This work was supported by grants from the National Natural Science Foundation of China (81430044) and the National Basic Research Development Program of China (2012CB518200 and 2011CB910800).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Fan or Ling-Ling Zhu.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1436 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Zhao, T., Cheng, X. et al. Cortical Inflammation is Increased in a DSS-Induced Colitis Mouse Model. Neurosci. Bull. 34, 1058–1066 (2018). https://doi.org/10.1007/s12264-018-0288-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-018-0288-5

Keywords

Navigation