[go: up one dir, main page]

Skip to main content
Log in

Review on characterization of nano-particle emissions and PM morphology from internal combustion engines: Part 1

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

This paper is review of the characterization of exhaust particles from state-of-the-art internal combustion engines. We primarily focus on identifying the physical and chemical properties of nano-particles, i.e., the concentration, size distribution, and particulate matter (PM) morphology. Stringent emissions regulations of the Euro 6 and the LEV III require a substantial reduction in the PM emissions from vehicles, and improvements in human health effects. Advances in powertrains with sophisticated engine control strategies and engine after-treatment technologies have significantly improved PM emission levels, motivating the development of new particle measurement instruments and chemical analysis procedures. In this paper, recent research trends are reviewed for physical and chemical PM characterization methods for gasoline and diesel fueled engines under various vehicle certification cycles and real-world driving conditions. The effects of engine technologies, fuels, and engine lubricant oils on exhaust PM morphology and compositions are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Albuquerque, P. C., Ávila, R. N., Zárante, P. H. and Sodré, J. R. (2011). Lubricating oil influence on exhaust hydrocarbon emissions from a gasoline fueled engine. Tribology Int., 44, 1796–1799.

    Article  Google Scholar 

  • Arsie, I., Iorio, S. D. and Vaccaro, S. (2013). Experimental investigation of the effects of AFR, spark advance and EGR on nanoparticle emissions in a PFI SI engine. J. Aerosol Sci., 64, 1–10.

    Article  Google Scholar 

  • Barone, T., Storey, J. M., Youngquist, A. D. and Szybist, J. P. (2012). An analysis of direct-injection spark-ignition (DISI) soot morphology. Atmos. Environ., 49, 268–294.

    Article  Google Scholar 

  • Basshuysen, R. (2009). Gasoline Engine with Direct Injection — Processes, Systems, Development, and Potential. 1st edn. Vieweg+Teubner. Wiesbaden.

    Google Scholar 

  • Beatrice, C., Iorio, S. D., Guido, C. and Napolitano, P. (2012). Detailed characterization of particulate emissions of an automotive catalyzed DPF using actual regeneration strategies. Experimental Thermal and Fluid Science, 39, 45–53.

    Article  Google Scholar 

  • Berndorfer, A., Breuer, S., Piock, W. and Bacho, P. V. (2013). Diffusion combustion phenomena in GDI engines caused by injection process. SAE Paper No. 2013-01-0261.

    Book  Google Scholar 

  • Bielaczyc, P., Klimkiewicz, D., Pajdowski, P., Szczotka, A. and Woodburn, J. (2013). A quantitative comparison of the particulate matter emissions from two Euro 5 vehicles (direct injection petrol & diesel). 17th ETH Conf. Combustion Generated Nanoparticles.

    Google Scholar 

  • Borge, P. (2013). Death by Diesel. Engine Technology International. UK.

    Google Scholar 

  • Brandenbergera, S., Mohra, M., Grobb, K. and Neukomb, H. P. (2005). Contribution of unburned lubricating oil and diesel fuel to particulate emission from passenger cars. Atmos. Environ., 39, 6985–6994.

    Article  Google Scholar 

  • Brijesh, P. and Sreedhara, S. (2013). Exhaust emissions and its control methods in compression ignition engines: A review. Int. J. Automotive Technology 14,2, 195–206.

    Article  Google Scholar 

  • Burtscher, H. (2005). Physical characterization of particulate emissions from diesel engines: A review. J. Aerosol Sci., 36, 896–932.

    Article  Google Scholar 

  • Bzdek, B. R., Pennington, R. and Johnston, M. V. (2012). Single particle chemical analysis of ambient ultrafine aerosol: A review. J. Aerosol Sci., 52, 109–120.

    Article  Google Scholar 

  • CARB (2010). Proposed amendments to California’s lowemission vehicle regulations — Particulate matter mass, ultrafine solid particle number, and black carbon emissions. Preliminary Discussion Paper.

    Google Scholar 

  • Carroll, J. L., Khalek, I. A., Smith, L. E., Fujita, E. and Zielinska, B. (2011). Collaborative lubricating oil study on emissions (CLOSE). NREL Report, NREL/SR-5400-52668.

    Google Scholar 

  • Carvalho, M. J., Seidl, P. R., Belchior, C. R. and Sodré, J. R. (2010). Lubricant viscosity and viscosity improver additive effects on diesel fuel economy. Tribology Int., 43, 2298–2302.

    Article  Google Scholar 

  • Choi, K., Kim, J., Myung, C. L., Lee, M., Kwon, S., Lee, Y. and Park, S. (2012). Effect of the mixture preparation on the nanoparticle characteristics of gasoline directinjection vehicles. J. Automobile Engineering 226,11, 1514–1524.

    Article  Google Scholar 

  • Choi, K., Kim, J., Ko, A., Myung, C. L., Park, S. and Lee, J. (2013). Size-resolved engine exhaust aerosol characteristics in a metal foam particulate filter for GDI light-duty vehicle. J. Aerosol Sci., 57, 54–70.

    Article  Google Scholar 

  • Choi, S. and Min, K. (2013). Analysis of the combustion and emissions of a diesel engine in early-injection, partially-premixed charge compression ignition regimes. J. Automobile Engineering 227,7, 939–950.

    Article  Google Scholar 

  • Dardiotis, C., Martini, G., Marotta, A. and Manfredi, U. (2013). Low-temperature cold-start gaseous emissions of late technology passenger cars. Applied Energy, 111, 468–478.

    Article  Google Scholar 

  • Delphi (2013). Worldwide Emissions Standards. www.delphi.com

    Google Scholar 

  • Denner, V. (2013). Shaping the future — Innovations for efficient mobility. 33rd Internationales Wiener Motorensymposium.

    Google Scholar 

  • Dong, L., Shu, G. and Liang, X. (2013). Effect of lubricating oil on the particle size distribution and total number concentration in a diesel engine. Fuel Processing Technology, 109, 78–83.

    Article  Google Scholar 

  • Duchaussoy, Y., Covin, B., Boccadoro, Y., Meurisse, O., Mercier, J. P. and Levasseur, D. (2011). The new RENAULT 1.2 GDI turbocharged engine. 20th Aachen Colloquium.

    Google Scholar 

  • Eastwood, P. (2008). Particulate Emissions from Vehicles. John Wiley & Sons Ltd. UK.

    Google Scholar 

  • Eiglmeier, C., Bauder, R., Fröhlich, A., Gabel, K., Helbig, J., Marckwardt, H. and Zülch, S. (2011). The new 3.0 litre V6 TDI engine with dual-stage turbocharging in the Audi A6 and A7. 20th Aachen Colloquium.

    Google Scholar 

  • Fan, Q., Bian, J., Lu, H., Li, L. and Deng, J. (2012). Effect of the fuel injection strategy on first-cycle firing and combustion characteristics during cold start in a TSDI gasoline engine. Int. J. Automotive Technology 13,4, 523–531.

    Article  Google Scholar 

  • Fraidl, G., Hollerer, P., Kapus, P. and Vidmar, K. (2012). Particulate number for EU6+ challenges and solutions. Advanced Emission Control Concepts for Gasoline Engines Conf.

    Google Scholar 

  • Fushimia, A., Saitoha, K., Fujitania, Y., Hasegawaa, S., Takahashid, K., Tanabea, K. and Kobayashia, S. (2011). Organic-rich nanoparticles (diameter: 10–30 nm) in diesel exhaust: Fuel and oil contribution based on chemical composition. Atmos. Environ., 45, 6326–6336.

    Article  Google Scholar 

  • Gaddam, C. and Vander Wal, R. L. (2013). Physical and chemical characterization of SIDI engine particulates. Combustion and Flame, 160, 2517–2528.

    Article  Google Scholar 

  • Giechaskiel, B., Mamakos, A., Andersson, J., Dilara, P., Martini, G., Schindler, W. and Bergmann, A. (2012). Measurement of automotive nonvolatile particle number emissions within the European legislative framework: A review. Aerosol Science and Technology, 46, 719–749.

    Article  Google Scholar 

  • Giechaskiel, B., Maricq, M., Ntziachristos, L., Dardiotis, C., Wang, X., Axamnn, H., Bergmann, A. and Schindler, W. (2014). Review of motor vehicle particulate emissions sampling and measurement: From smoke and filter mass to particle number. Aerosol Science and Technology, 67, 48–86.

    Article  Google Scholar 

  • Hassaneen, A. E., Samuel, S. and Whelan, I. (2011). Combustion instabilities and nanoparticles emission fluctuations in GDI spark ignition engine. Int. J. Automotive Technology 12,6, 787–794.

    Article  Google Scholar 

  • Hoshino, K., Hirata, M., Kurihara, I. and Tekeshima, S. (2005). Effects of engine oil composition on diesel particulate filter. JSAE Paper No. 20055128.

    Book  Google Scholar 

  • Hwang, I., Choi, K., Kim, J., Myung, C. L. and Park, S. (2012). Experimental evaluation of combustion phenomena in and nanoparticle emissions from a sidemounted direct-injection engine with gasoline and liquid-phase liquefied petroleum gas fuel. J. Automobile Engineering 226,1, 112–122.

    Article  Google Scholar 

  • Inagaki, H. and Kondo, T. (2009). Influences of lubricating oil consumption on PM emission in gasoline engine. JSAE Paper No. 20095284.

    Google Scholar 

  • Johnson, K. C., Thomas, D., Durbin, T. G., Jung, H. Cocker, D. R., Bishnu, D. and Giannelli, R. (2011). Quantifying in-use PM measurements for heavy duty diesel vehicles. Environ. Sci. Technol., 45, 6073–6079.

    Article  Google Scholar 

  • Jung, H., Kittelson, D. B. and Zachariah, M. R. (2003). The influence of engine lubricating oil on diesel nanoparticle emissions and kinetics of oxidation. SAE Paper No. 2003-01-3170.

    Book  Google Scholar 

  • Kern, B., Spiess, S. and Richter, J. M. (2013). The challenge of emission legislation EU6c for gasoline-DIengines, strategies meeting the new demands and preparing for extended test conditions. 22nd Aachen Colloquium.

    Google Scholar 

  • Kim, H. J., Han, B., Cho, G. B., Kim, Y. J., Yoo, J. S. and Oda, T. (2013a) Collection performance of an electrostatic filtration system combined with a metallic flow-through filter for ultrafine diesel particulate matters. Int. J. Automotive Technology 14,3, 489–497.

    Article  Google Scholar 

  • Kim, Y., Kim, Y. H., Jun, S. Y., Lee, K. H., Rew, S. H., Lee, D. and Park, S. (2013b). Strategies for particle emissions reduction from GDI engines. SAE Paper No. 2013-01-1556.

    Book  Google Scholar 

  • Kim, J., Choi, K., Myung, C. L. and Park. S. (2013c). Experimental evaluation of engine control strategy on the time resolved THC and nano-particle emission characteristics of liquid phase LPG direct injection (LPG-DI) engine during the cold start. Fuel Processing Technology, 106, 166–173.

    Article  Google Scholar 

  • Kirchner, U., Gallus, J., Börensen, C. and Vogt, R. (2013). Particle number emission of light-duty vehicles during real-world driving. 17th ETH Conf. Combustion Generated Nanoparticles.

    Google Scholar 

  • Ko, A., Kim, J., Choi, K., Myung, C. L., Kwon, S., Kim, K., Cho, Y. J. and Park, S. (2012). Experimental study of particle emission characteristics of a heavy-duty diesel engine and effects of after-treatment systems: Selective catalytic reduction, diesel particulate filter, and diesel particulate and NOx reduction. J. Automobile Engineering 226,12, 1689–1696.

    Article  Google Scholar 

  • Konstandopoulos, A. G. and Papaioannou, E. (2008). Update on the science and technology of diesel particulate filters. KONA Powder and Particle, 26, 36–65.

    Google Scholar 

  • Kousoulidou, M., Fontaras, G., Ntziachristos, L., Bonnel, P., Samaras, Z. and Dilara, P. (2013). Use of portable emissions measurement system (PEMS) for the development and validation of passenger car emission factors. Atmos. Environ., 64, 329–338.

    Article  Google Scholar 

  • Kufferath, A., Berns, S., Hammer, J., Busch, R., Frank, M. and Storch, A. (2012). The EU6 challenge at GDI-Assessment of feasible system solutions. 33 rd Internationales Wiener Motorensymposium.

    Google Scholar 

  • La Rocca, A., Shayler, P. J. and Fay, M. W. (2013). Nanoparticle characteristics of exhaust and soot-in-oil from a light duty diesel engine. 17th ETH Conf. Combustion Generated Nanoparticles.

    Google Scholar 

  • Lee, S., Cho, Y., Song, M., Kim, H., Park, J. and Baik, D. (2012). Experimental study on the characteristics of nano-particle emissions from a heavy-duty diesel engine using a Urea-SCR system. Int. J. Automotive Technology 13,3, 355–363.

    Article  Google Scholar 

  • Lee, D., Choi, S. C. and Lee, C. S. (2013a). Impact of SME blended fuel combustion on soot morphological characteristics in a diesel engine. Int. J. Automotive Technology 14,5, 757–762.

    Article  MathSciNet  Google Scholar 

  • Lee, J., Choi, S., Kim, H., Kim, D., Choi, H. and Min, K. (2013b). Reduction of emissions with propane addition to a diesel engine. Int. J. Automotive Technology 14,4, 551–558.

    Article  Google Scholar 

  • Lee, J., Hong, K., Choi, S., Yu, S., Choi, H. and Min, K. (2013c). Comparison of the effects of multiple injection strategy on the emissions between moderate and heavy EGR rate conditions: Part 1-pilot injections. J. Mechanical Science and Technology 27,4, 1135–1141.

    Article  Google Scholar 

  • Liati, A. and Eggenschwiler, P. D. (2010). Characterization of particulate matter deposited in diesel particulate filters: Visual and analytical approach in macro-, microand nano-scales. Combustion and Flame, 157, 1658–1670.

    Article  Google Scholar 

  • Liati, A., Eggenschwiler, P. D., Gubler, E. M., Schreiber, D. and Aguirre, M. (2012). Investigation of diesel ash particulate matter: A scanning electron microscope and transmission electron microscope study. Atmos. Environ., 49, 391–402.

    Article  Google Scholar 

  • Lu, T., Huang, Z., Cheng, C. S. and Ma, J. (2012). Size distribution of EC, OC and particle-phase PAHs emissions from a diesel engine fueled with three fuels. Science of the Total Environment, 438, 33–41.

    Article  Google Scholar 

  • Mamakos, A., Martini, G., Dilara, P. and Drossinos, Y. (2011). Feasibility of Introducing Particulate Filters on Gasoline Direct Injection Vehicles. JRC Report, EUR 25297 EN.

    Google Scholar 

  • Mamakos, A., Bonnel, P., Perujo, A. and Carriero, M. (2013a). Assessment of portable emission measurement systems (PEMS) for heavy-duty diesel engines with respect to particulate matter. J. Aerosol Sci., 57, 54–70.

    Article  Google Scholar 

  • Mamakos, A., Martini, G. and Manfredi, U. (2013b). Assessment of the legislated particle number measurement procedure for a Euro 5 and a Euro 6 compliant diesel passenger cars under regulated and unregulated conditions. J. Aerosol Sci., 55, 31–47.

    Article  Google Scholar 

  • Maricq, M. M. (2007). Chemical characterization of particulate emissions from diesel engines: A review. J. Aerosol Sci., 38, 1079–1118.

    Article  Google Scholar 

  • Mock, P., German, J., Bandivadekar, A., Riemersma, I., Ligterink, N. and Lambrecht, U. (2013). A comparison of official and ‘real-world’ fuel consumption and CO2 values for cars in Europe and the United States. ICCT, White Paper.

    Google Scholar 

  • Momenimovahed, A., Olfert, J. S., Checkel, M. D., Pathak, S., Sood, V., Robindro, L., Singal, K., Jain, A. K. and Garg, O. (2013). Effect of fuel choice on nanoparticle emission factors in LPG-gasoline bi-fuel vehicles. Int. J. Automotive Technology 14,1, 111.

    Article  Google Scholar 

  • Myung, C. L., Choi, K., Kim, J., Lim, Y., Lee, J. and Park, S (2012a). Comparative study of regulated and unregulated toxic emissions characteristics from a spark ignition direct injection light-duty vehicle fueled with gasoline and liquid phase LPG (liquefied petroleum gas). Energy, 44, 189–196.

    Article  Google Scholar 

  • Myung, C. L., Kim, J., Choi, K., Hwang, I. and Park, S. (2012b). Comparative study of engine control strategies for particulate emissions from direct injection light-duty vehicle fueled with gasoline and liquid phase liquefied petroleum gas (LPG). Fuel, 94, 348–355.

    Article  Google Scholar 

  • Myung, C. L., Ko, A., Kim, J., Choi, K., Kwon, S. and Park, S. (2013). Specific engine performance and gaseous emissions characteristics of European test cycle and worldwide harmonized driving cycle for a heavyduty diesel engine. J. Mechanical Science and Technology 27,12, 3893–3902.

    Article  Google Scholar 

  • Myung, C. L., Ko, A., Lim, Y., Kim, S., Lee, J., Choi, K. and Park, S. (2014). Mobile source air toxic emissions from direct injection spark ignition gasoline and LPG passenger car under various in-use vehicle driving modes in Korea. Fuel Processing Technology, 119, 19–31.

    Article  Google Scholar 

  • Myung, C. L. and Park, S. (2012). Exhaust nanoparticle emissions from internal combustion engines: A review. Int. J. Automotive Technology 13,1, 9–22.

    Article  Google Scholar 

  • Neußer, H. J., Kahrstedt, J., Jelden, H., Dorenkamp, R. and Düsterdiek, T. (2013). The EU6 engines based on the modular diesel system of Volkswagen-Innovative exhaust gas purification near the engine for further minimization of NOx and CO2. 34th Internationales Wiener Motorensymposium.

    Google Scholar 

  • Noël, L., Hayrault, P., Leblanc, M., Raux, S. and Jeuland, N. (2013). Detailed characterization of nanoparticles emitted by spark ignition direct injection engines. 17 th ETH Conf. Combustion Generated Nanoparticles.

    Google Scholar 

  • Ntziachristos, L., Fragkiadoulakis, P., Samaras, Z., Janka, K. and Tikkanen, J. (2011). Exhaust particle sensor for OBD application. SAE Paper No. 2011-01-0626.

    Book  Google Scholar 

  • Ohm, I. Y. (2013). Effects of intake valve angle on combustion characteristic in an SI engine. Int. J. Automotive Technology 14,4, 529–537.

    Article  Google Scholar 

  • Omae, K., Tomoda, T., Hashimoto, H., Matsumoto, S., Tanaka, A. and Uchiyama, K. (2012). Innovative fuel injection system for future Toyota diesel passenger cars. 33rd Internationales Wiener Motorensymposium.

    Google Scholar 

  • Opitza, B., Drochner, A., Vogelb, H. and Votsmeiera, M. (2013). An experimental and simulation study on the cold start behaviour of particulate filters with wall integrated three way catalyst. Applied Catalysis B: Environmental, 144, 203–215.

    Article  Google Scholar 

  • Paul, B., Datta, A. and Sahab, A. (2013). Optical characterization of nano-sized organic carbon particles emitted from a small gasoline engine. Particuology, 11, 249–255.

    Article  Google Scholar 

  • Rahman, S. M., Masjuki, H. H., Kalam, M. A., Abedin, M. J., Sanjid, A. and Sajjad, H. (2013). Impact of idling on fuel consumption and exhaust emissions and available idle-reduction technologies for diesel vehicles — A review. Energy Conversion and Management, 74, 171–182.

    Article  Google Scholar 

  • Rakopoulos, C. and Giakoumis, E. (2009). Diesel Engine Transient Operation — Principles of Operation and Simulation Analysis. Springer. UK.

    Google Scholar 

  • Richter, J. M., Klingmann, R., Spiess, S. and Wong, K. F. (2012). Application of catalyzed gasoline particulate filters to GDI vehicles. SAE Paper No. 2012-01-1244.

    Book  Google Scholar 

  • Sakono, T., Nakai, E., Kataoka, M., Takamatsu, H. and Terazawa, Y. (2011). Mazda SKYACTIV-D 2.2L diesel engine. 20th Aachen Colloquium.

    Google Scholar 

  • Sanchez, F. P., Bandivadekar, A. and German, J. (2012). Estimated cost of emission reduction technologies for light-duty vehicles. ICCT.

    Google Scholar 

  • Sappok, A., Morrow, R., Wong, V., Pazar, J., Doustar, I. and Zisholtz, E. (2010). Unraveling DPF degradation using chemical tracers and opportunities for extending filter life. DEER Conf.

    Google Scholar 

  • Schöppe, D., Zhang, H., Rösel, G., Achleitner, E., Kapphan, F. and Dupont, H. (2013). Next generation engine management systems for gasoline direct injection. 34 th Internationales Wiener Motorensymposium.

    Google Scholar 

  • Shim, B. J., Park, K. S., Koo, J. M., Nguyen, M. S. and Jin, S. H. (2013). Estimation of soot oxidation rate in DPF under carbon and non-carbon based particulate matter accumulated condition. Int. J. Automotive Technology 14,2, 207–212.

    Article  Google Scholar 

  • Stetter, J., Forster, N., Ghandhi, J. and Foster, D. (2003) The impact of oil consumption mechanisms on diesel exhaust particle size distributions and detailed exhaust chemical composition. DEER Conf.

    Google Scholar 

  • Thiruvengadam, A., Besch, M., Carder D., Oshinuga, A. and Gautam, M. (2012). Influence of real-world engine load conditions on nanoparticle emissions from a DPF and SCR equipped heavy-duty diesel engine. Environ. Sci. Technol., 46, 1907–1913.

    Article  Google Scholar 

  • Vincent, J. H. (2007). Aerosol Sampling — Sciences, Standards, Instrumentations, and Applications. John Wiley & Sons Ltd. UK.

    Google Scholar 

  • Weiss, M., Bonnel, P., Kühlwein, J., Provenza, A., Lambrecht, U., Alessandrini, S., Carriero, M., Colombo, R., Forni, P., Lanappe, G., Lijour, P. L., Manfredi, U., Montigny, F. and Sculati, M. (2012). Will Euro 6 reduce the NOx emissions of new diesel cars? — Insights from on-road tests with portable emissions measurement systems (PEMS). Atmos. Environ., 62, 657–665.

    Article  Google Scholar 

  • Whitaker, P., Kapus, P., Ogris, M. and Hollerer, P. (2011). Measures to reduce particulate emissions from gasoline DI engines. SAE Paper No. 2011-01-1219.

    Book  Google Scholar 

  • Wang, D., Liu, Z. C., Tian, J., Liu, J. W. and Zhang, J. R. (2012). Investigation of particle emission characteristics from a diesel engine with a diesel particulate filter for alternative fuels. Int. J. Automotive Technology 13,7, 1023–1032.

    Article  Google Scholar 

  • Wang, L., Song, C., Song, J., Lv, K., Pang, H. and Zhang, W. (2013). Aliphatic C-H and oxygenated surface functional groups of diesel in-cylinder soot: Characterizations and impact on soot oxidation behavior. Proc. Combustion Institute, 34, 3099–3106.

    Article  Google Scholar 

  • Yamano, J., Ikoma, K., Matsui, R., Ikegami, N., Mori, S. and Yano, T. (2013). The new “Earth Dreams Technology i- DTEC” 1.6 L diesel engine from Honda. 34th Internationales Wiener Motorensymposium.

    Google Scholar 

  • Zhang, S. and McMahon, W. (2012). Particulate emissions for LEV II light-duty gasoline direct injection vehicles. SAE Paper No. 2012-01-0442.

    Book  Google Scholar 

  • Zhao, H. (2010). Advanced Direct Injection Combustion Engine Technologies and Development — Volume 2: Diesel Engines. Woodhead Publishing Limited. UK.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myung, C.L., Ko, A. & Park, S. Review on characterization of nano-particle emissions and PM morphology from internal combustion engines: Part 1. Int.J Automot. Technol. 15, 203–218 (2014). https://doi.org/10.1007/s12239-014-0022-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-014-0022-x

Key Words

Navigation