[go: up one dir, main page]

Skip to main content
Log in

Atomic and Littlewood–Paley Characterizations of Anisotropic Mixed-Norm Hardy Spaces and Their Applications

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Let \(\vec {a}:=(a_1,\ldots ,a_n)\in [1,\infty )^n\), \(\vec {p}:=(p_1,\ldots ,p_n)\in (0,\infty )^n\) and \(H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)\) be the anisotropic mixed-norm Hardy space associated with \(\vec {a}\) defined via the non-tangential grand maximal function. In this article, via first establishing a Calderón–Zygmund decomposition and a discrete Calderón reproducing formula, the authors then characterize \(H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)\), respectively, by means of atoms, the Lusin area function, the Littlewood–Paley g-function or \(g_{\lambda }^*\)-function. The obtained Littlewood–Paley g-function characterization of \(H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)\) coincidentally confirms a conjecture proposed by Hart et al. (Trans Am Math Soc, https://doi.org/10.1090/tran/7312, 2017). Applying the aforementioned Calderón–Zygmund decomposition as well as the atomic characterization of \(H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)\), the authors establish a finite atomic characterization of \(H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)\), which further induces a criterion on the boundedness of sublinear operators from \(H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)\) into a quasi-Banach space. Then, applying this criterion, the authors obtain the boundedness of anisotropic Calderón–Zygmund operators from \(H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)\) to itself [or to the mixed-norm Lebesgue space \(L^{\vec {p}}(\mathbb {R}^n)\)]. The obtained atomic characterizations of \(H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)\) and boundedness of anisotropic Calderón–Zygmund operators on these Hardy-type spaces positively answer two questions mentioned by Cleanthous et al. (J Geom Anal 27:2758–2787, 2017). All these results are new even for the isotropic mixed-norm Hardy spaces on \(\mathbb {R}^n\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Álvarez, J., Milman, M.: \(H^p\) continuity properties of Calderón-Zygmund-type operators. J. Math. Anal. Appl. 118, 63–79 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bagby, R.J.: An extended inequality for the maximal function. Proc. Am. Math. Soc. 48, 419–422 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benedek, A., Panzone, R.: The space \(L^p\), with mixed norm. Duke Math. J. 28, 301–324 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  4. Besov, O.V., Il’in, V.P., Lizorkin, P.I.: The \(L_p\)-estimates of a certain class of non-isotropically singular integrals (Russian). Dokl. Akad. Nauk SSSR 169, 1250–1253 (1966)

    MathSciNet  Google Scholar 

  5. Blozinski, A.P.: Multivariate rearrangements and Banach function spaces with mixed norms. Trans. Am. Math. Soc. 263, 149–167 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Borup, L., Nielsen, M.: On anisotropic Triebel-Lizorkin type spaces, with applications to the study of pseudo-differential operators. J. Funct. Spaces Appl. 6, 107–154 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bownik, M.: Anisotropic Hardy spaces and wavelets. Mem. Am. Math. Soc. 164(781), vi+122 (2003)

    MathSciNet  MATH  Google Scholar 

  8. Bownik, M.: Atomic and molecular decompositions of anisotropic Besov spaces. Math. Z. 250, 539–571 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bownik, M.: Anisotropic Triebel-Lizorkin spaces with doubling measures. J. Geom. Anal. 17, 387–424 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bownik, M., Ho, K.-P.: Atomic and molecular decompositions of anisotropic Triebel-Lizorkin spaces. Trans. Am. Math. Soc. 358, 1469–1510 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bownik, M., Li, B., Yang, D., Zhou, Y.: Weighted anisotropic Hardy spaces and their applications in boundedness of sublinear operators. Indiana Univ. Math. J. 57, 3065–3100 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bownik, M., Li, B., Yang, D., Zhou, Y.: Weighted anisotropic product Hardy spaces and boundedness of sublinear operators. Math. Nachr. 283, 392–442 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Calderón, A.-P.: An atomic decomposition of distributions in parabolic \(H^p\) spaces. Adv. Math. 25, 216–225 (1977)

    Article  MATH  Google Scholar 

  14. Calderón, A.-P., Torchinsky, A.: Parabolic maximal functions associated with a distribution. Adv. Math. 16, 1–64 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  15. Calderón, A.-P., Torchinsky, A.: Parabolic maximal functions associated with a distribution. II. Adv. Math. 24, 101–171 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  16. Calderón, A.-P., Zygmund, A.: On the existence of certain singular integrals. Acta Math. 88, 85–139 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, T., Sun, W.: Iterated and mixed weak norms with applications to geometric inequalities. arXiv:1712.01064

  18. Christ, M.: A \(T(b)\) theorem with remarks on analytic capacity and the Cauchy integral. Colloq. Math. 60/61, 601–628 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cleanthous, G., Georgiadis, A.G., Nielsen, M.: Discrete decomposition of homogeneous mixed-norm Besov spaces. In: Functional Analysis, Harmonic Analysis, and Image Processing: A Collection of Papers in Honor of Björn Jawerth, 167–184, Contemporary Mathematics, 693. American Mathematical Society, Providence (2017)

  20. Cleanthous, G., Georgiadis, A.G., Nielsen, M.: Anisotropic mixed-norm Hardy spaces. J. Geom. Anal. 27, 2758–2787 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cleanthous, G., Georgiadis, A.G., Nielsen, M.: Molecular decomposition of anisotropic homogeneous mixed-norm spaces with applications to the boundedness of operators. Appl. Comput. Harmon. Anal. (2017). https://doi.org/10.1016/j.acha.2017.10.001

  22. Ding, Y., Sato, S.: Littlewood-Paley functions on homogeneous groups. Forum Math. 28, 43–55 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Fabes, E.B., Rivière, N.M.: Singular integrals with mixed homogeneity. Stud. Math. 27, 19–38 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  24. Farkas, W.: Atomic and subatomic decompositions in anisotropic function spaces. Math. Nachr. 2000, 83–113 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Farkas, W., Johnsen, J., Sickel, W.: Traces of anisotropic Besov-Lizorkin-Triebel spaces—a complete treatment of the borderline cases. Math. Bohem. 125, 1–37 (2000)

    MathSciNet  MATH  Google Scholar 

  26. Fan, X., He, J., Li, B., Yang, D.: Real-variable characterizations of anisotropic product Musielak-Orlicz Hardy spaces. Sci. China Math. 60, 2093–2154 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fefferman, C., Stein, E.M.: \(H^p\) spaces of several variables. Acta Math. 129, 137–193 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  28. Fernández, D.L.: Vector-valued singular integral operators on \(L^p\)-spaces with mixed norms and applications. Pac. J. Math. 129(2), 257–275 (1987)

    Article  MATH  Google Scholar 

  29. Folland, G.B., Stein, E.M.: Hardy Spaces on Homogeneous Groups. Mathematical Notes, vol. 28. Princeton University Press, Princeton (1982)

    MATH  Google Scholar 

  30. Georgiadis, A.G., Nielsen, M.: Pseudodifferential operators on mixed-norm Besov and Triebel-Lizorkin spaces. Math. Nachr. 289, 2019–2036 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Georgiadis, A.G., Johnsen, J., Nielsen, M.: Wavelet transforms for homogeneous mixed-norm Triebel-Lizorkin spaces. Monatsh. Math. 183, 587–624 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Grafakos, L.: Classical Fourier Analysis. Graduate Texts in Mathematics, vol. 249. Springer, New York (2014)

  33. Grafakos, L.: Modern Fourier Analysis. Graduate Texts in Mathematics, vol. 250. Springer, New York (2014)

    MATH  Google Scholar 

  34. Grafakos, L., Liu, L., Yang, D.: Maximal function characterizations of Hardy spaces on RD-spaces and their applications. Sci. China Ser. A 51, 2253–2284 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Guliyev, V.S., Mustafayev, R.Ch.: Boundedness of the anisotropic maximal and anisotropic singular integral operators in generalized Morrey spaces. Acta Math. Sin. (Engl. Ser.) 27, 2361–2370 (2011)

  36. Han, Y., Müller, D., Yang, D.: Littlewood-Paley characterizations for Hardy spaces on spaces of homogeneous type. Math. Nachr. 279, 1505–1537 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Han, Y., Müller, D., Yang, D.: A theory of Besov and Triebel-Lizorkin spaces on metric measure spaces modeled on Carnot-Carathéodory spaces. Abstr. Appl. Anal. (2008). Art. ID 893409

  38. Hart, J., Torres, R.H., Wu, X.: Smoothing properties of bilinear operators and Leibniz-type rules in Lebesgue and mixed Lebesgue spaces. Trans. Am. Math. Soc. (2017). https://doi.org/10.1090/tran/7312

  39. Ho, K.-P.: Strong maximal operator on mixed-norm spaces. Ann. Univ. Ferrara Sez. VII Sci. Mat. 62, 275–291 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Hörmander, L.: Estimates for translation invariant operators in \(L^p\) spaces. Acta Math. 104, 93–140 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  41. Johnsen, J., Munch Hansen, S., Sickel, W.: Characterisation by local means of anisotropic Lizorkin-Triebel spaces with mixed norms. Z. Anal. Anwend. 32, 257–277 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Johnsen, J., Munch Hansen, S., Sickel, W.: Anisotropic, mixed-norm Lizorkin-Triebel spaces and diffeomorphic maps. J. Funct. Spaces (2014). Art. ID 964794

  43. Johnsen, J., Munch Hansen, S., Sickel, W.: Anisotropic Lizorkin-Triebel spaces with mixed norms—traces on smooth boundaries. Math. Nachr. 288, 1327–1359 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Johnsen, J., Sickel, W.: A direct proof of Sobolev embeddings for quasi-homogeneous Lizorkin-Triebel spaces with mixed norms. J. Funct. Spaces Appl. 5, 183–198 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Johnsen, J., Sickel, W.: On the trace problem for Lizorkin-Triebel spaces with mixed norms. Math. Nachr. 281, 669–696 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. Ky, L.D.: New Hardy spaces of Musielak-Orlicz type and boundedness of sublinear operators. Integr. Equ. Oper. Theory 78, 115–150 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Li, B., Bownik, M., Yang, D., Zhou, Y.: Anisotropic singular integrals in product spaces. Sci. China Math. 53, 3163–3178 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Li, B., Bownik, M., Yang, D., Yuan, W.: Duality of weighted anisotropic Besov and Triebel-Lizorkin spaces. Positivity 16, 213–244 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. Li, B., Bownik, M., Yang, D.: Littlewood-Paley characterization and duality of weighted anisotropic product Hardy spaces. J. Funct. Anal. 266, 2611–2661 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  50. Li, B., Bownik, M., Yang, D., Yuan, W.: A mean characterization of weighted anisotropic Besov and Triebel-Lizorkin spaces. Z. Anal. Anwend. 33, 125–147 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  51. Li, B., Fan, X., Yang, D.: Littlewood-Paley characterizations of anisotropic Hardy spaces of Musielak-Orlicz type. Taiwan. J. Math. 19, 279–314 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  52. Liang, Y., Sawano, Y., Ullrich, T., Yang, D., Yuan, W.: New characterizations of Besov-Triebel-Lizorkin-Hausdorff spaces including coorbits and wavelets. J. Fourier Anal. Appl. 18, 1067–1111 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  53. Liu, J., Yang, D., Yuan, W.: Anisotropic Hardy-Lorentz spaces and their applications. Sci. China Math. 59, 1669–1720 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  54. Liu, J., Weisz, F., Yang, D., Yuan, W.: Variable anisotropic Hardy spaces and their applications. Taiwan. J. Math. (2017). https://doi.org/10.11650/tjm/171101

  55. Liu, J., Yang, D., Yuan, W.: Anisotropic variable Hardy-Lorentz spaces and their real interpolation. J. Math. Anal. Appl. 456, 356–393 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  56. Liu, J., Weisz, F., Yang, D., Yuan, W.: Littlewood-Paley and finite atomic characterizations of anisotropic variable Hardy-Lorentz spaces and their applications. J. Fourier Anal. Appl. (2018). https://doi.org/10.1007/s00041-018-9609-3

  57. Liu, J., Yang, D., Yuan, W.: Littlewood-Paley characterizations of anisotropic Hardy-Lorentz spaces. Acta Math. Sci. Ser. B Engl. Ed. 38, 1–33 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  58. Liu, J., Yang, D., Yuan, W.: Littlewood-Paley characterizations of weighted anisotropic Triebel-Lizorkin spaces via averages on balls (Submitted)

  59. Lizorkin, P.I.: Multipliers of Fourier integrals and estimates of convolutions in spaces with mixed norm. Applications. Izv. Akad. Nauk SSSR Ser. Mat. 34, 218–247 (1970)

    MathSciNet  Google Scholar 

  60. Lu, S.-Z.: Four Lectures on Real \(H^p\) Spaces. World Scientific Publishing Co. Inc., River Edge (1995)

    Book  MATH  Google Scholar 

  61. Luxemburg, W.A.J.: On the measurability of a function which occurs in a paper by A. C. Zaanen. Nederl. Akad. Wetensch. Proc. Ser. A. 61 = Indag. Math. 20, 259–265 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  62. Meda, S., Sjögren, P., Vallarino, M.: On the \(H^1\)-\(L^1\) boundedness of operators. Proc. Am. Math. Soc. 136, 2921–2931 (2008)

    Article  MATH  Google Scholar 

  63. Nakai, E., Sawano, Y.: Hardy spaces with variable exponents and generalized Campanato spaces. J. Funct. Anal. 262, 3665–3748 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  64. Nogayama, T.: Mixed Morrey spaces. arXiv:1806.09293

  65. Sato, S.: Estimates for singular integrals on homogeneous groups. J. Math. Anal. Appl. 400, 311–330 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  66. Sato, S.: Characterization of parabolic Hardy spaces by Littlewood-Paley functions. Results Math. 73(73), 106 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  67. Sato, S.: Weak type estimates for functions of Marcinkiewicz type with fractional integrals of mixed homogeneity. Math. Scand. (to appear). arXiv:1708.07343

  68. Sawano, Y.: Atomic decompositions of Hardy spaces with variable exponents and its application to bounded linear operator. Integr. Equ. Oper. Theory 77, 123–148 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  69. Sawano, Y., Ho, K.-P., Yang, D., Yang, S.: Hardy spaces for ball quasi-Banach function spaces. Diss. Math. (Rozprawy Mat.) 525, 1–102 (2017)

    MathSciNet  MATH  Google Scholar 

  70. Schmeisser, H.-J., Triebel, H.: Topics in Fourier Analysis and Function Spaces. Wiley, Chichester (1987)

    MATH  Google Scholar 

  71. Stefanov, A., Torres, R.H.: Calderón-Zygmund operators on mixed Lebesgue spaces and applications to null forms. J. London Math. Soc. (2) 70, 447–462 (2004)

  72. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series. Monographs in Harmonic Analysis III, vol. 43. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  73. Stein, E.M., Wainger, S.: Problems in harmonic analysis related to curvature. Bull. Am. Math. Soc. 84, 1239–1295 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  74. Stein, E.M., Weiss, G.: On the theory of harmonic functions of several variables I. The theory of \(H^p\)-spaces. Acta Math. 103, 25–62 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  75. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series, vol. 32. Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

  76. Torres, R.H.: Boundedness results for operators with singular kernels on distribution spaces. Mem. Am. Math. Soc. 90(442), viii+172 (1991)

    MathSciNet  MATH  Google Scholar 

  77. Triebel, H.: Theory of Function Spaces. III. Birkhäuser Verlag, Basel (2006)

    MATH  Google Scholar 

  78. Triebel, H.: Tempered Homogeneous Function Spaces. EMS Series of Lectures in Mathematics. European Mathematical Society (EMS), Zürich (2015)

    Book  MATH  Google Scholar 

  79. Ullrich, T.: Continuous characterization of Besov-Lizorkin-Triebel space and new interpretations as coorbits. J. Funct. Space Appl. (2012). Art. ID 163213

  80. Yamazaki, M.: A quasi-homogeneous version of paradifferential operators, I. Boundedness on spaces of Besov type. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 33, 131–174 (1986)

    MathSciNet  MATH  Google Scholar 

  81. Yamazaki, M.: A quasi-homogeneous version of paradifferential operators. II. A symbol calculus. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 33, 311–345 (1986)

    MathSciNet  MATH  Google Scholar 

  82. Yan, X., Yang, D., Yuan, W., Zhuo, C.: Variable weak Hardy spaces and thier applications. J. Funct. Anal. 271, 2822–2887 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  83. Yang, D., Liang, Y., Ky, L.D.: Real-Variable Theory of Musielak-Orlicz Hardy Spaces. Lecture Notes in Mathematics, vol. 2182. Springer, Cham (2017)

    Book  MATH  Google Scholar 

  84. Yang, D., Zhou, Y.: Boundedness of sublinear operators in Hardy spaces on RD-spaces via atoms. J. Math. Anal. Appl. 339, 622–635 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  85. Yang, D., Zhou, Y.: A boundedness criterion via atoms for linear operators in Hardy spaces. Constr. Approx. 29, 207–218 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  86. Yang, D., Zhou, Y.: New properties of Besov and Triebel-Lizorkin spaces on RD-spaces. Manuscr. Math. 134, 59–90 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  87. Yang, D., Yang, D., Hu, G.: The Hardy Space \(H^1\) with Non-doubling Measures and Their Applications. Lecture Notes in Mathematics, vol. 2084. Springer, Cham (2013)

    Book  MATH  Google Scholar 

  88. Zhuo, C., Sawano, Y., Yang, D.: Hardy spaces with variable exponents on RD-spaces and applications. Diss. Math. (Rozprawy Mat.) 520, 1–74 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their careful reading and useful comments, which indeed improved the presentation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Yuan.

Additional information

This project is supported by the National Natural Science Foundation of China (Grant Nos. 11761131002, 11571039, 11726621, and 11471042).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Liu, J., Yang, D. et al. Atomic and Littlewood–Paley Characterizations of Anisotropic Mixed-Norm Hardy Spaces and Their Applications. J Geom Anal 29, 1991–2067 (2019). https://doi.org/10.1007/s12220-018-0070-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-018-0070-y

Keywords

Mathematics Subject Classification

Navigation