[go: up one dir, main page]

Skip to main content
Log in

Numerical solution of nonlinear equations of traffic flow density using spectral methods by filter

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

This paper introduces an innovative approach that marries the spectral method with a time-dependent partial differential equation filter to tackle the phenomenon of shock waves in traffic flow modeling. Through the strategic application of Discrete low-pass filters, this method effectively mitigates shock-induced deviations, leading to significantly more accurate results compared to conventional spectral techniques. We conduct a thorough examination of the stability conditions inherent to this approach, providing valuable insights into its robustness. To substantiate its effectiveness, we present a series of numerical examples illustrating the method’s prowess in delivering precise solutions. Comparative analysis against established methods such as Lax and Cu reveals a marked superiority in accuracy. This work not only contributes a novel numerical technique to the field of traffic flow modeling but also addresses a persistent challenge, offering a promising avenue for further research and practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data that support the findings of this study are included within the article (and any supplementary files).

References

  1. Belkadi, S., Atounti, M.: Non oscillatory central schemes for general non-local traffic flow models. Int. J. Appl. Math. 35(4), 515–528 (2022)

    Article  MATH  Google Scholar 

  2. Cai, W., Shu, C.W.: Uniform high-order spectral methods for one-and two-dimensional euler equations. J. Comput. Phys. 104(2), 427–443 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cai, W., Gottlieb, D., Shu, C.W.: Essentially nonoscillatory spectral fourier methods for shock wave calculations. Math. Comput. 52(186), 389–410 (1989)

    MathSciNet  MATH  Google Scholar 

  4. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin, Heidelberg (2006)

    Book  MATH  Google Scholar 

  5. Chen, J., Liu, R., Hu, Y.: High-resolution central-upwind scheme for second-order macroscopic traffic flow models. Int. J. Mod. Phys. C 31(7), 2050097 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cui, Z., Kang, L., Li, L., Wang, L., Wang, K.: A hybrid neural network model with improved input for state of charge estimation of lithium-ion battery at low temperatures. Renew. Energy 198, 1328–1340 (2022)

    Article  MATH  Google Scholar 

  7. Don, W.S.: Numerical study of pseudospectral methods in shock wave applications. J. Comput. Phys. 110(1), 103–111 (1994)

    Article  MATH  Google Scholar 

  8. Gottlieb, D., Shu, C.W., Solomonoff, A., Vandeven, H.: On the Gibbs phenomenon I: recovering exponential accuracy from the Fourier partial sum of a nonperiodic analytic function. J. Comput. Appl. Math. 43(1–2), 81–98 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gottlieb, D., Tadmor, E.: Recovering pointwise values of discontinuous data within spectral accuracy. In Progress and supercomputing in computational fluid dynamics, Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  10. Gottlieb, D.: Issues in the application of high order schemes, In Algorithmic trends in computational fluid dynamics, pages 195–218, Springer, (1993)

  11. Gottlieb, D., Hesthaven, J.S.: Spectral methods for hyperbolic problems. J. Comput. Appl. Math. 128(1–2), 83–131 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gu, Y., Wei, G.W.: Conjugate filter approach for shock capturing. Commun. Numer. Methods Eng. 19(2), 99–110 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guo, Y., Yang, D., Zhang, Y., Wang, L., Wang, K.: Online estimation of SOH for lithium-ion battery based on SSA-Elman neural network. Protect. Control Modern Power Syst. 7, 40 (2022)

    Article  MATH  Google Scholar 

  14. Hesthaven, J.S., Gottlieb, D.: Stable spectral methods for conservation laws on triangles with unstructured grids. Comput. Methods Appl. Mech. Eng. 175(3–4), 361–381 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hussaini, M.Y., Kopriva, D.A., Salas, M.D., Zang, T.A.: Spectral methods for the euler equations, I-fourier methods and shock capturing. AIAA J. 23(1), 64–70 (1985)

    Article  MATH  Google Scholar 

  16. Kara, M., Seçgin, A.: Discrete singular convolution method for modelling of waveguide interaction of beam-type structures with impedance boundaries. Eng. Struct. 247, 113209 (2021)

    Article  MATH  Google Scholar 

  17. Kara, M., Seçgin, A.: Discrete singular convolution method for one-dimensional vibration and acoustics problems with impedance boundaries. J. Sound Vib. 28, 22–36 (2019)

    Article  MATH  Google Scholar 

  18. Kumar, S., Das, P., Kumar, K.: Adaptive mesh based efficient approximations for Darcy scale precipitation-dissolution models in porous media. International Journal for Numerical Methods in Fluids. (2024)

  19. Kumar, S., Das, P. Second-order a priori and a posteriori error estimations for integral boundary value problems of nonlinear singularly perturbed parameterized form. Numer. Algorithms 21, 1–28 (2024)

  20. Kurganov, A., Polizzi, A.: Non-oscillatory central schemes for traffic flow models with Arrhenius look-ahead dynamics. Netw. Heterog. Media 4(3), 431–451 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lax, P.D.: Hyperbolic systems of conservation laws and the mathematical theory of shock waves. CBMS Reg. Conf. Ser. Appl. Math. 1, 48 (1973). https://doi.org/10.1137/1.9781611970562.ch1

    Article  MathSciNet  MATH  Google Scholar 

  22. LeVeque, R.J.: Finite volume methods for hyperbolic problems, Volume 31, Cambridge university press, (2002)

  23. Luo, X., Wu, S.P.: An improved WENO-Z+ scheme for solving hyperbolic conservation laws. J. Comput. Phys. 445, 110608 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mattheij, R.M., Rienstra, S.W., Boonkkamp, J.T.T.: Partial differential equations: modeling, analysis, (2005)

  25. Mohamed, K., Abdelrahman, M.A.E.: The NHRS scheme for the two models of traffic flow. Comput. Appl. Math. 42, 53 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mohammadian, S., Zheng, Z., Haque, Md.M., Bhaskar, A.: Performance of continuum models for realworld traffic flows: comprehensive benchmarking. Transport. Res. Part B Methodol. 147, 132–167 (2021)

    Article  Google Scholar 

  27. Mohammadian, S., van Wageningen-Kessels, F.: Improved numerical method for Aw-Rascle type continuum traffic flow models. Transp. Res. Rec. 2672, 262–276 (2018)

    Article  MATH  Google Scholar 

  28. Nemrat AS, A., Zainuddin, Z.: The Australian Journal of Mathematical Analysis and Applications

  29. Das, P., Rana, S.: Theoretical prospects of fractional order weakly singular Volterra Integro differential equations and their approximations with convergence analysis. Mathe. Methods Appl. Sci. 44(11), 9419–40 (2021)

  30. Das, P., Rana S, Ramos, H.: A perturbation-based approach for solving fractional-order Volterra-Fredholm integro differential equations and its convergence analysis. International Journal of Computer Mathematics. 2020 Oct 2;97(10):(1994-2014)

  31. Pratibhamoy, D., Rana, S., Ramos, H.: Homotopy perturbation method for solving Caputo-type fractional-order Volterra-Fredholm integro-differential equations. Comput. Math. Methods 1(5), 1047 (2019)

    MathSciNet  MATH  Google Scholar 

  32. Das, P. Comparison of a priori and a posteriori meshes for singularly perturbed nonlinear parameterized problems. J. Comput. Appl. Math. 15(290), 16–25 (2015)

  33. Das, P., Vigo-Aguiar, J.: Parameter uniform optimal order numerical approximation of a class of singularly perturbed system of reaction diffusion problems involving a small perturbation parameter. J. Comput. Appl. Math. 1(354), 533–44 (2019)

  34. Das, P. An a posteriori based convergence analysis for a nonlinear singularly perturbed system of delay differential equations on an adaptive mesh. Numer. Algorithms 81, 465–487 (2019)

  35. Das, P., Natesan, S.: Optimal error estimate using mesh equidistribution technique for singularly perturbed system of reaction-diffusion boundary-value problems. Appl. Math. Comput. 249, 265–277 (2014)

  36. Das, P., Srinivasan, N.: Adaptive mesh generation for singularly perturbed fourth-order ordinary differential equations. Int. J. Comput. Math. 92(3), 562–78 (2015)

  37. Das, P., Srinivasan, N.: A uniformly convergent hybrid scheme for singularly perturbed system of reaction-diffusion Robin type boundary-value problems. J. Appl. Math. Comput. 41, 447–71 (2013)

  38. Shakti, D., Mohapatra, J., Das, P., Vigo-Aguiar, J.: A moving mesh refinement based optimal accurate uniformly convergent computational method for a parabolic system of boundary layer originated reaction-diffusion problems with arbitrary small diffusion terms. J. Comput. Appl. Math. 1(404), 113167 (2022)

  39. Shakti, D., Mohapatra, J., Das, P., Vigo-Aguiar, J.: A moving mesh refinement based optimal accurate uniformly convergent computational method for a parabolic system of boundary layer originated reaction-diffusion problems with arbitrary small diffusion terms. J. Comput. Appl. Math. 1(404), 113167 (2022)

  40. Shi, A., Persson, P.O., Zahr, M.J.: Implicit shock tracking for unsteady flows by the method of lines, in: Presentations and videos to 10th International Conference on Adaptative Modeling and Simulation (ADMOS), URL https://www.scipedia.com/public/Per_et_al_2021a

  41. Shiromani, R., Shanthi, V., Das, P. A higher order hybrid-numerical approximation for a class of singularly perturbed two-dimensional convection-diffusion elliptic problem with non-smooth convection and source terms. Comput. Math. Appl. 15(142), 9–30 (2023)

  42. Sopasakis, A., Katsoulakis, M.A.: Stochastic modeling and simulation of traffic flow: asymmetric single exclusion process with arrhenius look-ahead dynamics. SIAM J. Appl. Math. 66(3), 921–944 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sopasakis, A.: Stochastic noise approach to traffic flow modeling. Physica A 342(3–4), 741–754 (2004)

    Article  MATH  Google Scholar 

  44. Srivastava, H.M., Nain, A.K., Vats, R.K., et al.: A theoretical study of the fractional-order p-Laplacian nonlinear Hadamard type turbulent flow models having the Ulam-Hyers stability. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 117, 160 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sudarshan, S., Mohapatra, J., Das, P., Choudhuri, D.: Higher order approximations for fractional order integro-parabolic partial differential equations on an adaptive mesh with error analysis. Comput. Math. Appl. 15(150), 87–101 (2023)

  46. Sumit, S., Das, P., Kumar, S.: Parameter uniform higher order numerical treatment for singularly perturbed Robin type parabolic reaction diffusion multiple scale problems with large delay in time. Appl. Numer. Math. 1(196), 1–21 (2024)

  47. Tadmor, E.: Convergence of spectral methods for nonlinear conservation laws. SIAM J. Numer. Anal. 26(1), 30–44 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  48. Toro, EF.: Riemann Solvers and Numerical Methods for Fluid Dynamics [electronic resource], A Practical Introduction

  49. Treiber, M., Kesting, A.: Traffic flow dynamics: Data. Springer-Verlag, Berlin Heidelberg, Models and Simulation (2013)

    Book  MATH  Google Scholar 

  50. Vandeven, H.: Family of spectral filters for discontinuous problems. J. Sci. Comput. 6(2), 159–192 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wan, D.C., Patnaik, B.S.V., Wei, G.W.: Discrete singular convolution-finite subdomain method for the solution of incompressible viscous flows. J. Comput. Phys. 180(1), 229–255 (2002)

    Article  MATH  Google Scholar 

  52. Wang, X., Yuan, Z.: Discrete singular convolution and Taylor series expansion method for free vibration analysis of beams and rectangular plates with free boundaries. Int. J. Mech. Sci. 122, 184–191 (2017)

    Article  MATH  Google Scholar 

  53. Wei, G.W., Zhao, Y.B., Xiang, Y.: Discrete singular convolution and its application to the analysis of plates with internal supports, part 1: Theory and algorithm. Int. J. Numer. Meth. Eng. 55(8), 913–946 (2002)

    Article  MATH  Google Scholar 

  54. Yee, H.C., Sandham, N.D., Djomehri, M.J.: Low-dissipative high-order shock-capturing methods using characteristic-based filters. J. Comput. Phys. 150(1), 199–238 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhong, J., Zhang, J.: The stability of a degenerate fixed point for Guzowska-Luís-Elaydi model. J. Differ. Equations Appl. 24(3), 409–424 (2018)

    Article  MATH  Google Scholar 

  56. Zhou, Y.C., Wei, G.W.: High resolution conjugate filters for the simulation of flows. J. Comput. Phys. 189(1), 159–179 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for helpful comments, which lead to definite improvement in the manuscript.

Funding

The authors declare that this research received no grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

I confirm that all authors listed on the title page have contributed significantly to the work, have read the manuscript, attest to the validity and legitimacy of the data and its interpretation, and agree to its submission.

Corresponding author

Correspondence to Saeid Abbasbandy.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafi, S.E.S., Allahviranloo, T., Abbasbandy, S. et al. Numerical solution of nonlinear equations of traffic flow density using spectral methods by filter. J. Appl. Math. Comput. 71, 743–763 (2025). https://doi.org/10.1007/s12190-024-02252-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-024-02252-8

Keywords

Mathematics Subject Classification