[go: up one dir, main page]

Skip to main content
Log in

A stable higher-order numerical method for solving a system of third-order singular Emden-Fowler type equations

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

This paper proposes a new higher-order numerical method based on a difference scheme with uniform steps to solve a strongly nonlinear system of third-order singular Emden-Fowler-type equations. These problems are challenging to solve because of their singularity or strong nonlinearity. To handle the singularity of the problem, we approximate the derivatives at the endpoints and develop a new difference scheme. This scheme provides a system of nonlinear equations solved by an iterative method. Also, we mathematically establish the method’s stability, consistency, and convergence analysis using a matrix analysis approach. We also verify the presented technique’s efficiency, accuracy and applicability by solving different examples from the literature. We also show that the theoretical order of the technique is consistent with the numerical convergence rates. Additionally, our method easily achieves higher-order accuracy with minimal grid points, unlike most methods that typically require modifying the equation into an equivalent integral equation or using L’Hospital’s rule to remove singularities, resulting in lower-order accuracy approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

This article does not involve data sharing since no data sets were analyzed or generated during the present study.

References

  1. Boubaker, K., Van Gorder, R.A.: Application of the BPES to Lane-Emden equations governing polytropic and isothermal gas spheres. New Astron. 17(6), 565–569 (2012)

    MATH  Google Scholar 

  2. Flesch, U.: The distribution of heat sources in the human head: a theoretical consideration. J. Theor. Biol. 54(2), 285–287 (1975)

    MATH  Google Scholar 

  3. Lin, S.: Oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics. J. Theor. Biol. 60(2), 449–457 (1976)

    MATH  Google Scholar 

  4. Ramos, J.I.: Linearization methods in classical and quantum mechanics. Comput. Phys. Commun. 153(2), 199–208 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Dehghan, M., Shakeri, F.: Solution of an integro-differential equation arising in oscillating magnetic fields using He’s homotopy perturbation method. Progress Electromag. Res. 78, 361–376 (2008)

    MATH  Google Scholar 

  6. Wazwaz, A.-M., Rach, R., Bougoffa, L., Duan, J.-S.: Solving the Lane-Emden-Fowler type equations of higher orders by the Adomian decomposition method. Comput. Model. Eng. Sci. 100(6), 507–529 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Shahni, J., Singh, R., Cattani, C.: Bernoulli collocation method for the third-order Lane-Emden-Fowler boundary value problem. Appl. Numer. Math. 186(1), 100–103 (2023)

    MathSciNet  MATH  Google Scholar 

  8. Lane, H.J.: On the theoretical temperature of the sun, under the hypothesis of a gaseous mass maintaining its volume by its internal heat, and depending on the laws of gases as known to terrestrial experiment. Am. J. Sci. 148, 57–74 (1870)

    MATH  Google Scholar 

  9. Emden, R.: Gaskugeln: Anwendungen der mechanischen Wärmetheorie auf kosmologische und meteorologische Probleme, B. Teubner., (1907)

  10. Chawla, M., Katti, C.: Finite difference methods and their convergence for a class of singular two point boundary value problems. Numer. Math. 39(3), 341–350 (1982)

    MathSciNet  MATH  Google Scholar 

  11. Desaix, M., Anderson, D., Lisak, M.: Variational approach to the Thomas-Fermi equation. Eur. J. Phys. 25(6), 699 (2004)

    MATH  Google Scholar 

  12. Kanth, A.R.: Cubic spline polynomial for non-linear singular two-point boundary value problems. Appl. Math. Comput. 189(2), 2017–2022 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Lakestani, M., Dehghan, M.: Four techniques based on the b-spline expansion and the collocation approach for the numerical solution of the Lane-Emden equation. Math. Methods Appl. Sci. 36(16), 2243–2253 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Singh, R., Kumar, J.: An efficient numerical technique for the solution of nonlinear singular boundary value problems. Comput. Phys. Commun. 185(4), 1282–1289 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Zhou, F., Xu, X.: Numerical solutions for the linear and nonlinear singular boundary value problems using laguerre wavelets. Adv. Difference Equ. 2016(1), 17 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Parand, K., Yousefi, H., Delkhosh, M., Ghaderi, A.: A novel numerical technique to obtain an accurate solution to the thomas-fermi equation. Eur. Phys. J. Plus 131(7), 228 (2016)

    MATH  Google Scholar 

  17. Verma, A.K., Tiwari, D.: Higher resolution methods based on quasilinearization and Haar wavelets on Lane-Emden equations. Int. J. Wavelets Multiresol. Inf. Process. 17(03), 1950005 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Singh, R., Guleria, V., Singh, M.: Haar wavelet quasilinearization method for numerical solution of Emden-Fowler type equations. Math. Comput. Simul. 174, 123–133 (2020)

    MathSciNet  MATH  Google Scholar 

  19. Shahni, J., Singh, R.: Numerical solution of system of emden-fowler type equations by bernstein collocation method. J. Math. Chem. 59(4), 1117–1138 (2021)

    MathSciNet  MATH  Google Scholar 

  20. Shahni, J., Singh, R.: Laguerre wavelet method for solving Thomas-Fermi type equations. Eng. Comput. 38(4), 2925–2935 (2022)

    MATH  Google Scholar 

  21. Shahni, J., Singh, R.: A fast numerical algorithm based on Chebyshev-wavelet technique for solving Thomas-Fermi type equation. Eng. Comput. 38(Suppl 4), 3409–3422 (2022)

    MATH  Google Scholar 

  22. Shahni, J., Singh, R.: Numerical simulation of Emden-Fowler integral equation with Green’s function type kernel by Gegenbauer-wavelet, Taylor-wavelet and Laguerre-wavelet collocation methods. Math. Comput. Simul. 194(2022), 430–444 (2021)

    MathSciNet  MATH  Google Scholar 

  23. Alam, M.P., Begum, T., Khan, A.: A high-order numerical algorithm for solving Lane-Emden equations with various types of boundary conditions. Comput. Appl. Math. 40(6), 1–28 (2021)

    MathSciNet  MATH  Google Scholar 

  24. Sahoo, N., Singh, R.: A new efficient semi-numerical method with a convergence control parameter for Lane-Emden-Fowler boundary value problem. J. Comput. Sci. 70, 102041 (2023)

    MATH  Google Scholar 

  25. Chan, C., Hon, Y.: A constructive solution for a generalized Thomas-Fermi theory of ionized atoms. Q. Appl. Math. 45(3), 591–599 (1987)

    MathSciNet  MATH  Google Scholar 

  26. Kim, W., Chun, C.: A modified Adomian decomposition method for solving higher-order singular boundary value problems. Zeitschrift für Naturforschung A 65(12), 1093–1100 (2010)

    MATH  Google Scholar 

  27. Wazwaz, A.M.: Solving two Emden-Fowler type equations of third order by the variational iteration method. Appl. Math. Inf. Sci. 9(5), 2429 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Dezhbord, A., Lotfi, T., Mahdiani, K.: A numerical approach for solving the high-order nonlinear singular emden-fowler type equations. Adv. Difference Equ. 2018, 1–17 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Guirao, J.L., Sabir, Z., Saeed, T.: Design and numerical solutions of a novel third-order nonlinear Emden-Fowler delay differential model. Math. Probl. Eng. 2020, 1–9 (2020)

    MATH  Google Scholar 

  30. Sabir, Z., Raja, M.A.Z., Umar, M., Shoaib, M.: Design of neuro-swarming-based heuristics to solve the third-order nonlinear multi-singular Emden-Fowler equation. Eur. Phys. J. Plus 135(5), 410 (2020)

    MATH  Google Scholar 

  31. Ali, K. K., Mehanna, M., Wazwaz, A.-M., Shaalan, M.: Solve third order Lane-Emden-Fowler equation by Adomian decomposition method and quartic trigonometric B-spline method, Partial Diff. Equ. Appl. Math. 100676 (2024)

  32. Izadi, M., Roul, P.: A new approach based on shifted Vieta-Fibonacci-quasilinearization technique and its convergence analysis for nonlinear third-order Emden-Fowler equation with multi-singularity. Commun. Nonlinear Sci. Numer. Simul. 117, 106912 (2023)

    MathSciNet  MATH  Google Scholar 

  33. Singh, R., Singh, M.: An optimal decomposition method for analytical and numerical solution of third-order Emden-Fowler type equations. J. Comput. Sci. 63, 101790 (2022)

    MATH  Google Scholar 

  34. Shahni, J., Singh, R.: Numerical results of Emden-Fowler boundary value problems with derivative dependence using the bernstein collocation method. Eng. Comput. 38(Suppl 1), 371–380 (2022)

    MATH  Google Scholar 

  35. Hajimohammadi, Z., Shekarpaz, S., Parand, K.: The novel learning solutions to nonlinear differential models on a semi-infinite domain. Eng. Comput. 39(3), 2169–2186 (2023)

    MATH  Google Scholar 

  36. Parand, K., Aghaei, A., Kiani, S., Zadeh, T. I., Khosravi, Z.: A neural network approach for solving nonlinear differential equations of Lane–Emden type, Eng. Comput. 1–17 (2023)

  37. Modanli, M., Murad, M.A.S., Abdulazeez, S.T.: A new computational method-based integral transform for solving time-fractional equation arises in electromagnetic waves. Z. Angew. Math. Phys. 74(5), 186 (2023)

    MathSciNet  MATH  Google Scholar 

  38. Abu Arqub, O., Abo-Hammour, Z., Momani, S., Shawagfeh, N.: Solving Singular Two-Point Boundary Value Problems Using Continuous Genetic Algorithm. In: Abstract and applied analysis, Vol. 2012, Wiley Online Library, p. 205391 (2012)

  39. Rabah, A.B., Momani, S., Arqub, O.A.: The B-spline collocation method for solving conformable initial value problems of non-singular and singular types. Alex. Eng. J. 61(2), 963–974 (2022)

    MATH  Google Scholar 

  40. Abu Arqub, O.: Reproducing Kernel algorithm for the analytical-numerical solutions of nonlinear systems of singular periodic boundary value problems. Math. Probl. Eng. 2015(1), 518406 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Abu Arqub, O.: Computational algorithm for solving singular Fredholm time-fractional partial integrodifferential equations with error estimates. J. Appl. Math. Comput. 59(1), 227–243 (2019)

    MathSciNet  MATH  Google Scholar 

  42. Hasan, Y.Q., Zhu, L.M.: A note on the use of modified Adomian decomposition method for solving singular boundary value problems of higher-order ordinary differential equations. Commun. Nonlinear Sci. Numer. Simul. 14(8), 3261–3265 (2009)

    MATH  Google Scholar 

  43. Hasan, Y.Q., Zhu, L.M.: Solving singular boundary value problems of higher-order ordinary differential equations by modified Adomian decomposition method. Commun. Nonlinear Sci. Numer. Simul. 14(6), 2592–2596 (2009)

    MathSciNet  MATH  Google Scholar 

  44. Singh, N., Kumar, M.: Adomian decomposition method for solving higher order boundary value problems. Math. Theory Model. 2(1), 11–22 (2011)

    MATH  Google Scholar 

  45. Aruna, K., Kanth, A.R.: A novel approach for a class of higher order nonlinear singular boundary value problems. Int. J. Pure Appl. Math. 84(4), 321–329 (2013)

    MATH  Google Scholar 

  46. Iqbal, M.K., Abbas, M., Wasim, I.: New cubic B-spline approximation for solving third order Emden-Flower type equations. Appl. Math. Comput. 331, 319–333 (2018)

    MathSciNet  MATH  Google Scholar 

  47. Shah, A., Yuan, L., Khan, A.: Upwind compact finite difference scheme for time-accurate solution of the incompressible Navier-Stokes equations. Appl. Math. Comput. 215(9), 3201–3213 (2010)

    MathSciNet  MATH  Google Scholar 

  48. Düring, B., Fournié, M., Jüngel, A.: High order compact finite difference schemes for a nonlinear Black-Scholes equation. Int. J. Theor. Appl. Finance 6(07), 767–789 (2003)

    MathSciNet  MATH  Google Scholar 

  49. Zhao, J., Davison, M., Corless, R.M.: Compact finite difference method for American option pricing. J. Comput. Appl. Math. 206(1), 306–321 (2007)

    MathSciNet  MATH  Google Scholar 

  50. Mathale, D., Dlamini, P., Khumalo, M.: Compact finite difference relaxation method for chaotic and hyperchaotic initial value systems. Comput. Appl. Math. 37, 5187–5202 (2018)

    MathSciNet  MATH  Google Scholar 

  51. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103(1), 16–42 (1992)

    MathSciNet  MATH  Google Scholar 

  52. Roul, P., Goura, V.P., Agarwal, R.: A compact finite difference method for a general class of nonlinear singular boundary value problems with Neumann and Robin boundary conditions. Appl. Math. Comput. 350, 283–304 (2019)

    MathSciNet  MATH  Google Scholar 

  53. Roul, P., Kumari, T.: A novel approach based on mixed exponential compact finite difference and oha methods for solving a class of nonlinear singular boundary value problems. Int. J. Comput. Math. 100(3), 572–590 (2023)

    MathSciNet  MATH  Google Scholar 

  54. Abdulazeez, S.T., Modanli, M.: Solutions of fractional order pseudo-hyperbolic telegraph partial differential equations using finite difference method. Alex. Eng. J. 61(12), 12443–12451 (2022)

    MATH  Google Scholar 

  55. Tenekeci, M. E., Abdulazeez, S. T., Karadağ, K., Modanli, M.: Edge detection using the Prewitt operator with fractional order telegraph partial differential equations (PreFOTPDE), Multimedia Tools Appl. 1–17 (2024)

  56. Sahoo, N., Singh, R., Ramos, H.: An innovative fourth-order numerical scheme with error analysis for Lane-Emden-Fowler type systems, Numer. Algorithms 1–29 (2024)

  57. Abdulla, S.O., Abdulazeez, S.T., Modanli, M.: Comparison of third-order fractional partial differential equation based on the fractional operators using the explicit finite difference method. Alex. Eng. J. 70, 37–44 (2023)

    MATH  Google Scholar 

  58. Malo, D.H., Masiha, R.Y., Murad, M.A.S., Abdulazeez, S.T.: A new computational method based on integral transform for solving linear and nonlinear fractional systems. Jurnal Matematika MANTIK 7(1), 9–19 (2021)

    MATH  Google Scholar 

  59. Kirkpinar, S., Abdulazeez, S.T., Modanli, M.: Piecewise modeling of the transmission dynamics of contagious bovine pleuropneumonia depending on vaccination and antibiotic treatment. Fractals 30(08), 2240217 (2022)

    MATH  Google Scholar 

  60. Verma, A.K., Singh, M.: Singular nonlinear three point BVPs arising in thermal explosion in a cylindrical reactor. J. Math. Chem. 53(2), 670–684 (2015)

    MathSciNet  MATH  Google Scholar 

  61. Godunov, S.K., Ryabenkii, V.S.: Difference Schemes: An Introduction to the Underlying Theory. Elsevier, London (1987)

    MATH  Google Scholar 

  62. Wazwaz, A.-M.: The variational iteration method for solving systems of third-order Emden-Fowler type equations. J. Math. Chem. 55, 799–817 (2017)

    MathSciNet  MATH  Google Scholar 

  63. Rufai, M.A., Ramos, H.: Numerical integration of third-order singular boundary-value problems of Emden-Fowler type using hybrid block techniques. Commun. Nonlinear Sci. Numer. Simul. 105, 106069 (2022)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Contributions

N.S.: Contributed to formulation, Methodology, Visualization, Investigation, Programming, Writing - Original Draft. R.S.: Contributed to formulation, Methodology, Investigation, Writing- Review and Editing.

Corresponding author

Correspondence to Randhir Singh.

Ethics declarations

Conflict of interest

The authors certify that there are no conflict of interest to this work.

Ethical approval

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here, we present the system of nonlinear algebraic equations (at least 6 equations), solved by the Newton–Raphson method for Example 1:

for \(i=1\)

$$\begin{aligned} & \frac{740449}{1492992} z_{1,2}^9 z_{2,2}^2 - \frac{64}{5} z_{1,2} - \frac{429}{20} z_{1,3} + \frac{662}{15} z_{1,4} \\ & \qquad - \frac{431}{20} z_{1,5} + 6 z_{1,6} - \frac{3}{4} z_{1,7} + \frac{77}{12} = 0,\\ & \frac{10909}{5832} z_{1,3}^9 z_{2,3}^2 - 3 z_{1,3} + 16 z_{1,2} - \frac{232}{3} z_{1,4} + 83 z_{1,5} \\ & \qquad - 24 z_{1,6} + 3 z_{1,7} + \frac{7}{3} = 0,\\ & \frac{7209}{2048} z_{1,4}^9 z_{2,4}^2 - \frac{302}{5} z_{1,4} + \frac{432}{5} z_{1,2} + \frac{27}{20} z_{1,3} - \frac{567}{20} z_{1,5} \\ & \qquad + 54 z_{1,6} - \frac{27}{4} z_{1,7} - \frac{185}{4} = 0,\\ & \frac{2840}{729} z_{1,5}^9 z_{2,5}^2 - 16 z_{1,5} - 1376 z_{1,2} + 1644 z_{1,3} \\ & \qquad - \frac{2432}{3} z_{1,4} + 96 z_{1,6} + 12 z_{1,7} + \frac{1352}{3} = 0,\\ & \frac{153025}{1492992} z_{1,6}^9 z_{2,6}^2 + 426 z_{1,6} +16420 z_{1,2} - \frac{91281}{4} z_{1,3} + \frac{50246}{3} z_{1,4} \\ & \qquad - \frac{24667}{4} z_{1,5} + \frac{1125}{4} z_{1,7} - \frac{58667}{12} = 0,\\ & 280809 z_{1,3} - 193824 z_{1,2} - 223832 z_{1,4} + 105075 z_{1,5} - 27144 z_{1,6} + 3087 z_{1,7} \\ & \qquad - \frac{99}{8} z_{1,7}^9 z_{2,7}^2 + 55829 = 0, \end{aligned}$$

for \(i=2\)

$$\begin{aligned} & \frac{662}{15} z_{2,4} - \frac{429}{20} z_{2,3} - \frac{64}{5} z_{2,2} - \frac{431}{20} z_{2,5} +6 z_{2,6} \\ & \qquad - \frac{3}{4} z_{2,7} - \frac{749093}{1492992} z_{1,2}^7 z_{2,2}^2 + \frac{77}{12} =0,\\ & 16 z_{2,2} - 3 z_{2,3} - \frac{232}{3} z_{2,4} + 83 z_{2,5} - 24 z_{2,6} + 3 z_{2,7} - \frac{11993}{5832} z_{1,3}^7 z_{2,3}^2 + \frac{7}{3} =0,\\ & \frac{432}{5} z_{2,2} + \frac{27}{20} z_{2,3} - \frac{302}{5} z_{2,4} - \frac{567}{20} z_{2,5} + 54 z_{2,6} - \frac{27}{4} z_{2,7}\\ & \qquad - \frac{10125}{2048} z_{1,4}^7 z_{2,4}^2 - \frac{185}{4} =0,\\ & 1644 z_{2,3} - 1376 z_{2,2} - \frac{2432}{3} z_{2,4} - 16 z_{2,5} + 96 z_{2,6} + 12 z_{2,7}\\ & \qquad - \frac{7288}{729} z_{1,5}^7 z_{2,5}^2 + \frac{1352}{3} =0,\\ & 16420 z_{2,2} - \frac{91281}{4} z_{2,3} + \frac{50246}{3} z_{2,4} - \frac{24667}{4} z_{2,5} + 426 z_{2,6} + \frac{1125}{4} z_{2,7} \\ & \qquad - \frac{28715525}{1492992} z_{1,6}^7 z_{2,6}^2 - \frac{58667}{12} =0,\\ & 280809 z_{2,3} - 193824 z_{2,2} - 223832 z_{2,4} + 105075 z_{2,5} - 27144 z_{2,6} + 3087 z_{2,7} \\ & \qquad - \frac{297}{8} z_{1,7}^7 z_{2,7}^2 + 55829 =0. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, N., Singh, R. A stable higher-order numerical method for solving a system of third-order singular Emden-Fowler type equations. J. Appl. Math. Comput. 71, 387–414 (2025). https://doi.org/10.1007/s12190-024-02233-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-024-02233-x

Keywords