Abstract
Deep learning framework aids the researchers in learning different application areas to a greater extent. Deep learning framework is preferred over machine learning since it helps to learn the input from end to end, whereas latter one require the inputs to be cut into pieces according to the need. This paper proposes a Multi-Variant Deep Learning framework for learning and classifying the hyperspectral images. Multi-task Feature Leverage is incorporated by doing two-ordered feature extraction. The first order feature extraction was done by using Two Dimensional Empirical Wavelet Transforms (2D-EWT) and the second-order feature extraction was done by using Stacked Autoencoder (SAE) and Convolutional Neural Network (CNN) for the approximation image of 2D-EWT. Because of the possibility of working on prominent feature, the proposed work uses approximation image than the raw image. The classification was carried out by using Random Forest (RF), Multi- Support Vector Machine (MSVM) and Extreme learning machine (ELM).





Similar content being viewed by others
References
Aneesh C, Kumar S, Hisham P, Soman K (2015) Performance comparison of variational mode decomposition over empirical wavelet transform for the classification of power quality disturbances using support vector machine. Procedia Comput Sci 46:372–380
Bandos TV, Bruzzone L, Camps Valls G (2009) Classification of hyperspectral images with regularized linear discriminant analysis. IEEE Trans Geosci Remote Sens 47(3):862–873
Becerra-Rico J, Aceves-Fernández MA, Esquivel-Escalante K et al (2020) Airborne particle pollution predictive model using Gated Recurrent Unit (GRU) deep neural networks. Earth Sci Inform
Besag J (1974) Spatial interaction and the statistical analysis of lattice systems. J R Stat Soc Ser B Methodol 36:192–236
Bhatt M, Desai UB (1994) Robust image restoration algorithm using markov random field model. CVGIP Graph Model Image Proc 56(1):61–74
Bischof H, Leonardis A (1998) Finding optimal neural networks for land use classification. IEEE Trans Geosci Remote Sens 36(1):337–341
Camps-Valls G, Gómez-Chova L, Calpe-Maravilla J, Martín-Guerrero JD, Soria-Olivas E, Alonso-Chordá L, Moreno J (2004) Robust support vector method for hyperspectral data classification and knowledge discovery. IEEE Trans Geosci Remote Sens 42(7):1530–1542
Cao X, Xu L, Meng D, Zhao Q, Xu Z (2017) Integration of 3-dimensional discrete wavelet transform and markov random field for hyperspectral image classification. Neurocomputing 226:90–100
Chen Y, Nasrabadi NM, Tran TD (2011) Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans Geosci Remote Sens 49(10):3973–3985
Chen Y, Nasrabadi NM, Tran TD (2013) Hyperspectral image classification via kernel sparse representation. IEEE Trans Geosci Remote Sens 51(1):217–231
Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2014) Semantic image segmentation with deep convolutional nets and fullyconnected crfs. arXiv preprint
Chen Y, Jiang H, Li C, Jia X, Ghamisi P (2016) Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans Geosci Remote Sens 54(10):6232–6251
Chen S, Qin J, Ji X, Lei B, Wang T, Ni D, Cheng J-Z (2017) Automatic scoring of multiple semantic attributes with multi-task feature leverage: a study on pulmonary nodules in CT images. IEE Trans Med Imaging 36:802–814
Civco DL (1993) Artificial neural networks for land-cover classification and mapping. Int J Geogr Inf Sci 7(2):173–186
Dalla MM, Villa A, Benediktsson JA, Chanussot J, Bruzzone L (2011) Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis. IEEE Geosci Remote Sens Lett 8(3):542–546
Demir B, Erturk S (2008) Empirical mode decomposition pre-process for higher accuracy hyperspectral image classification. In: IEEE Int. Conf. Geoscience and Remote Sensing Symposium 2. pp 939–941
Demir B, Erturk S (2010) Empirical mode decomposition of hyperspectral images for support vector machine classification. IEEE Trans Geosci Remote Sens 48(11):4071–4084
Duarte Carvajalino JM, Sapiro G, Vélez-Reyes M, Castillo PE (2008) Multiscale representation and segmentation of hyperspectral imagery using geometric partial differential equations and algebraic multi-grid methods. IEEE Trans Geosci Remote Sens 46(8):2418–2434
Erturk A, Gullu MK, Erturk S (2013) Hyperspectral image classification using empirical mode decomposition with spectral gradient enhancement. IEEE Trans Geosci Remote Sens 51(5):2787–2798
Fang L, Liu G, Li S, Ghamisi P, Benediktsson JA (2019) Hyperspectral image classification with squeeze multibias network. IEEE Trans Geosci Remote Sens 57(3):1291–1301
Fauvel M, Tarabalka Y, Benediktsson JA, Chanussot J, Tilton JC (2013) Advances in spectral-spatial classification of hyperspectral images. Proc IEEE 101(3):652–675
Gao Y, Chua T-S (2013) Hyperspectral image classification by using pixel spatial correlation. pp 141–151
Gilles J (2013) Empirical wavelet transform. IEEE Trans Signal Process 61(16):3999–4010
Gilles J, Tran G, Osher S (2014) 2D empirical transforms, wavelets, ridgelets, and curvelets revisited. SIAM J Imaging Sci 7(1):157–186
Goetz AF, Vane G, Solomon JE, Rock BN (1985) Imaging spectrometry for earth remote sensing. Science 228:1147–1153
Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge http://www.deeplearningbook.org
Gormus ET, Canagarajah N, Achim A (2012) Dimensionality reduction of hyperspectral images using empirical mode decompositions and wavelets. IEEE J Sel Top Appl Earth Observ Remote Sens 5(6):1821–1830
Harkin A, Basener W (2012) Hyperspectral image segmentation. Center for Applied and Computational Mathematics. Research Publication
He N (2019) Feature extraction with multiscale covariance maps for hyperspectral image classification. IEEE Trans Geosci Remote Sens 57(2):755–769
He L, Li J, Liu C, Li S (2018) Recent advances on spectral–spatial hyperspectral image classification: an overview and new guidelines. IEEE Trans Geosci Remote Sens 56(3):1579–1597
Hu J, Wang J, Ma K (2015) A hybrid technique for short-term wind speed prediction. Energy 81:563–574
Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond A Math Phys Eng Sci 454:903–995
Immovilli F, Bellini A, Rubini R, Tassoni C (2010) Diagnosis of bearing faults in induction machines by vibration or current signals: a critical comparison. IEEE Trans Ind Appl 46(4):1350–1359
Jambholkar T, Gurve D, Sharma PB (2015) Application of empirical wavelet transform (EWT) on images to explore brain tumor. In: International Conference on IEEE Signal Processing, Computing and Control (ISPCC). pp 200–204
Ji S, Xu W, Yang M, Yu K (2013) 3D convolutional neural networks for human action recognition. IEEE Trans Pattern Anal Mach Intell 35(1):221–231
Jia S, Zhang X, Li Q (2015) Spectral–spatial hyperspectral image classification using regularized low-rank representation and sparse representation-based graph cuts. IEEE J Sel Top Appl Earth Obs Remote Sens 8(6):2473–2484
Joshua Bapu J, Jemi Florinabel D (2020) Automatic annotation of satellite images with multi class support vector machine. Earth Sci Inform
Kang X, Li C, Lim S, Lin H (2018) Classification of hyperspectral images by Gabor filtering based deep network. IEEE J Sel Topics Appl Earth Observ Remote Sens 11(4):1166–1178
Kedadouche M, Thomas M, Tahan A (2016) A comparative study between empirical wavelet transforms and empirical mode decomposition methods: application to bearing defect diagnosis. Mech Syst Signal Process 81:88–107
Kolmogorov V, Zabin R (2004) What energy functions can be minimizedvia graph cuts? IEEE Trans Pattern Anal Mach Intell 26(2):147–159
Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems. pp 1097–1105
Landgrebe D (2002) Hyperspectral image data analysis. IEEE Signal Proc Mag 19(1):17–28
Li Y, Xue B, Hong H, Zhu X (2014) Instantaneous pitch estimation based on empirical wavelet transform. In: Digital Signal Processing (DSP). 2014 19th International Conference on. IEEE. pp 250–253
Li S, Song W, Fang L, Chen Y, Ghamisi P, Benediktsson JA (2019) Deep learning for Hyperspectral image classification: an overview. IEEE Trans Geosci Remote Sens 57(9):6690–6709
Licciardi G, Marpu PR, Chanussot J, Benediktsson JA (2012) Linear versus nonlinear pca for the classification of hyperspectral data based on the extended morphological profiles. IEEE Geosci Remote Sens Lett 9(3):447–451
Linderhed A (2004) Adaptive image compression with wavelet packets and empirical mode decomposition. Citeseer
Ma L, Crawford MM, Tian J (2010) Local manifold learning based k-nearest-neighbor for hyperspectral image classification. IEEE Trans Geosci Remote Sens 48(11):4099–4109
Maheshwari S, Pachori RB, Acharya UR (2017) Automated diagnosis of glaucoma using empirical wavelet transform and correntropy features extracted from fundus images. IEEE J Biomed Health Inform 21:803–813
Melgani F, Bruzzone L (2004) Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans Geosci Remote Sens 42(8):1778–1790
Mendez Rial R, Martin-Herrero J (2012) Efficiency of semi-implicit schemes for anisotropic diffusion in the hypercube. IEEE Trans Image Process 21(5):2389–2398
Nidhin Prabhakar TV, Geetha P (2017) Two-dimensional empirical wavelet transform based supervised hyperspectral image classification. ISPRS J Photogramm Remote Sens 133:37–45
Paoletti ME, Haut JM, Fernandez-Beltran R, Plaza J, Plaza AJ, Pla F (2019) Deep pyramidal residual networks for spectral-spatial hyperspectral image classification. IEEE Trans Geosci Remote Sens 57(2):740–754
Plaza A, Benediktsson JA, Boardman JW, Brazile J, Bruzzone L, Camps-Valls G, Chanussot J, Fauvel M, Gamba P, Gualtieri A, Marconcini M, Tilton JC, Trianni G (2009) Recent advances in techniques for hyperspectral image processing. Remote Sens Environ 113:S110–S122
Prabhakar TVN, Geetha P (2015) Empirical wavelet transform for improved hyperspectral image classification. Intell Syst Technol Appl 1:393–401
Qian Y, Ye M, Zhou J (2013) Hyperspectral image classification based on structured sparse logistic regression and three-dimensional wavelet texture features. IEEE Trans Geosci Remote Sens 51(4):2276–2291
Reyes MG, Zhao X, Neuhoff DL, Pappas TN (2007) Lossy compression of bilevel images based on markov random fields. In: IEEE International Conference on Image Processing (ICIP). 373
Shelhamer E, Long J, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp 3431–3440
Shen L, Jia S (2011) Three-dimensional Gabor wavelets for pixel-based hyperspectral imagery classification. IEEE Trans Geosci Remote Sens 49(12):5039–5046
Soltani-Farani A, Rabiee HR, Hosseini SA (2015) Spatial-aware dictionary learning for hyperspectral image classification. IEEE Trans Geosci Remote Sens 53(1):527–541
Sun X, Qu Q, Nasrabadi NM, Tran TD (2014) Structured priors for sparse-representation-based hyperspectral image classification. IEEE Geosci Remote Sens Lett 11(7):1235–1239
Szegedy C, Toshev A, Erhan D (2013) Deep neural networks for object detection. In: Advances in neural information processing systems. pp 2553–2561
Tarabalka Y, Benediktsson JA, Chanussot J (2009) Spectral–spatial classification of hyperspectral imagery based on partitional clustering techniques. IEEE Trans Geosci Remote Sens 47(8):2973–2987
Thirumala K, Umarikar AC, Jain T (2015) Estimation of single-phase and threephasepower-quality indices using empirical wavelet transform. IEEE Trans Power Deliv 30(1):445–454
Villa A, Benediktsson JA, Chanussot J, Jutten C (2011) Hyperspectral image classification with independent component discriminant analysis. IEEE Trans Geosci Remote Sens 49(12):4865–4876
Wang T, Liang M, Li J, Cheng W (2014) Rolling element bearing fault diagnosis via fault characteristic order (FCO) analysis. Mech Syst Signal Process 45(1):139–153
Wu KL, Hsieh PF (2005) Empirical mode decomposition for dimensionality reduction of hyperspectral data. In: Geoscience and Remote Sensing Symposium 2. pp 1241–1244
Ye J, Wittman T, Bresson X, Osher S (2010) Segmentation for hyperspectral images with priors. Adv Visual Comput:97–106
Yu S, Jia S, Xu C (2017) Convolutional neural networks for hyperspectral image classification. Neurocomputing 219:88–98
Zhan Y, Hu D, Wang Y, Yu X (2018) Semisupervised hyperspectral image classification based on generative adversarial networks. IEEE Geosci Remote Sens Lett 15(2):212–216
Zhang H, Li Y, Zhang Y, Shen Q (2017) Spectral-spatial classification of hyperspectral imagery using a dual-channel convolutional neural network. Remote Sensing Letters 8(5):438–447
Zhao W, Du S (2016) Spectral-spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach. IEEE Trans Geosci Remote Sens 54(8):4544–4554
Zikic D, Glocker B, Kutter O, Groher M, Komodakis N, Kamen A, Paragios N, Navab N (2010) Linear intensity-based image registration by markov random fields and discrete optimization. Med Image Anal 14(4):550–562
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by: H. Babaie
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Jayapriya, K., Jacob, I.J. & Darney, P.E. Hyperspectral image classification using multi-task feature leverage with multi-variant deep learning. Earth Sci Inform 13, 1093–1102 (2020). https://doi.org/10.1007/s12145-020-00485-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12145-020-00485-2