[go: up one dir, main page]

Skip to main content
Log in

A class of balanced binary sequences with two-valued non-zero autocorrelation sum and good crosscorrelation sum

  • Research
  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

In this paper, we study a class of binary sequences with two-valued non-zero periodic autocorrelation sum and good periodic crosscorrelation sum as well as balanced properties. We make use of the sequences obtained in (No, J. et al., IEEE Trans. Inform. Theory 44(3), 1278-1282 2001) and adopt the extraction method similar to (Lüke, H. IEEE Trans. Inform. Theory 43(1) 1997). The new sequences are proven to be balanced or almost balanced. Based on these correlation and balanced properties, an important application is to construct Hadamard matrices of order \(p+1\) for \(p\equiv 3~(\)mod 4) and \(2p+2\) for \(p\equiv 1~(\)mod 4). Some examples are shown to verify the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arasu, K., Xiang, Q.: On the existence of periodic complementary binary sequences. Des. Codes Cryptogr. 2(3), 257–262 (1992)

    Article  MathSciNet  Google Scholar 

  2. Baumert, L.: Cyclic difference sets. Lecture Notes in Methematics, vol. 182. Spinger, Berlin (1971)

  3. Bömer, L., Antweiler, M.: Periodic complementary binary sequences. IEEE Trans. Inform. Theory 36(6), 1487–1494 (1990)

    Article  MathSciNet  Google Scholar 

  4. Colbourn, C.J., Dinitz, J.H.: Handbook of combinatorial designs, 2nd edn. Chapman & Hall/CRC, Boca Raton, FL (2007)

    Google Scholar 

  5. Ding, C., Helleseth, T., Lam, K.: Several classes of binary sequences with three-level autocorrelation. IEEE Trans. Inform. Theory 45(7), 2606–2612 (1999)

    Article  MathSciNet  Google Scholar 

  6. Ding, C., Helleseth, T., Martinsen, H.: New families of binary sequences with optimal three-level autocorrelation. IEEE Trans. Inform. Theory 47(1), 428–433 (2001)

    Article  MathSciNet  Google Scholar 

  7. Feng, K., Shiue, P., Xiang, Q.: On aperiodic and periodic complementary binary sequences. IEEE Trans. Inform. Theory 45(1), 296–303 (1999)

    Article  MathSciNet  Google Scholar 

  8. Fletcher, R., Gysin, M., Seberry, J.: Application of the discrete Fourier transform to the search for generalised Legendre pairs and Hadamard matrices. Australas. J. Combin. 23, 75–86 (2001)

    MathSciNet  Google Scholar 

  9. Golomb, S., Gong, G.: Signal design for good correlation (for wireless communication, cryptography, and radar). Cambridge University Press (2005)

    Book  Google Scholar 

  10. Gong, G.: Theory and applications of \(q\)-ary interleaved sequences. IEEE Trans. Inform. Theory 41(2), 400–411 (1995)

    Article  MathSciNet  Google Scholar 

  11. Gong, G.: New designs for signal sets with low cross correlation, balance property, and large linear span: \({\rm GF}(p)\) case. IEEE Trans. Inform. Theory 48(11), 2847–2867 (2002)

    Article  MathSciNet  Google Scholar 

  12. Helleseth, T., Kumar, P.V.: Sequences with low correlation. In Handbook of coding theory, vol. I, II, pp. 1765–1853. North-Holland, Amsterdam (1998)

    Google Scholar 

  13. Kretschmer, F., Gerlach, K.: Low sidelobe radar waveforms derived from orthogonal matrices. IEEE Trans. Aerosp. Electron. Syst. 27(1), 92–101 (1991)

    Article  MathSciNet  Google Scholar 

  14. Legendre, A.: Essai sur la théorie des nombres. Duprat, Paris (2009)

    Book  Google Scholar 

  15. Lempel, A., Cohn, M., Eastman, W.: A class of balanced binary sequences with optimal autocorrelation properties. IEEE Trans. Inform. Theory IT–23(1), 38–42 (1977)

    Article  MathSciNet  Google Scholar 

  16. Lüke, H.: Binary odd-periodic complementary sequences. IEEE Trans. Inform. Theory 43(1), 365–367 (1997)

    Article  MathSciNet  Google Scholar 

  17. No, J., Chung, H., Song, H., Yang, K., Lee, J., Helleseth, T.: New construction for binary sequences of period \(p^m-1\) with optimal autocorrelation using \((z+1)^d+az^d+b\). IEEE Trans. Inform. Theory 47(4), 1638–1644 (2001)

    Article  MathSciNet  Google Scholar 

  18. No, J., Chung, H., Yun, M.: Binary pseudorandom sequences of period \(2^m-1\) with ideal autocorrelation generated by the polynomial \(z^d+(z+1)^d\). IEEE Trans. Inform. Theory 44(3), 1278–1282 (1998)

    Article  MathSciNet  Google Scholar 

  19. Orrick, W.P.: Switching operations for Hadamard matrices. SIAM J. Discrete Math. 22(1), 31–50 (2008)

    Article  MathSciNet  Google Scholar 

  20. Seberry, J.: Orthogonal designs. Hadamard matrices, quadratic forms and algebras, updated edition. Springer, Cham (2017)

  21. Shinoda, K., Yamada, M.: A family of Hadamard matrices of dihedral group type Coding, cryptography and computer security (Lethbridge, AB, 1998), vol. 102, pp. 141–150. (2000)

  22. Sidelnikov, V.M.: The mutual correlation of sequences. Dokl. Akad. Nauk SSSR, 531–534 (1971)

  23. Sidelnikov, V.M.: Some k-valued pseudo-random sequences and nearly equidistant codes. Probl. Inf. Transm, 12–16 (1969)

  24. Song, M., Song, H.: New framework for sequences with perfect autocorrelation and optimal crosscorrelation. IEEE Trans. Inform. Theory 67(11), 7490–7500 (2021)

    Article  MathSciNet  Google Scholar 

  25. Storer, T.: Cyclotomy and difference sets. Lectures in Advanced Mathematics, Markham Publishing Co., Chicago, Ill No. 2 (1967)

  26. Tang, X., Ding, C.: New classes of balanced quaternary and almost balanced binary sequences with optimal autocorrelation value. IEEE Trans. Inform. Theory 56(12), 6398–6405 (2010)

    Article  MathSciNet  Google Scholar 

  27. Tang, X., Gong, G.: New constructions of binary sequences with optimal autocorrelation value/magnitude. IEEE Trans. Inform. Theory 56(3), 1278–1286 (2010)

    Article  MathSciNet  Google Scholar 

  28. Whiteman, A.L.: Skew Hadamard matrices of Goethals-Seidel type. Discrete Math. 2(4), 397–405 (1972)

    Article  MathSciNet  Google Scholar 

  29. Whiteman, A.L.: An infinite family of Hadamard matrices of Williamson type. J. Combinatorial Theory Ser. A 14(3), 334–340 (1973)

    Article  MathSciNet  Google Scholar 

  30. Whiteman, A.L.: Hadamard matrices of order \(4(2p+1)\). J. Number Theory 8(1), 1–11 (1976)

    Article  MathSciNet  Google Scholar 

  31. Zeng X., Hu L., Liu Q.: A novel method for constructing almost perfect polyphase sequences. In Coding and cryptography, volume 3969 of Lecture Notes in Comput. Sci., p. 346–353. Springer, Berlin, (2006)

Download references

Acknowledgements

This research is financially supported by the National Natural Science Foundation of China No.61771004 and No. 62371094.

Funding

This research is financially supported by the National Natural Science Foundation of China (No.61771004).

Author information

Authors and Affiliations

Authors

Contributions

Zhang provided the methodology. Shen wrote the main manuscript. All authors did the validation and reviewed the manuscript.

Corresponding author

Correspondence to Xiaojun Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, S., Zhang, X. A class of balanced binary sequences with two-valued non-zero autocorrelation sum and good crosscorrelation sum. Cryptogr. Commun. 16, 649–663 (2024). https://doi.org/10.1007/s12095-023-00692-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-023-00692-w

Keywords

Mathematics Subject Classification (2010)

Navigation