[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Targeting GLS1 to cancer therapy through glutamine metabolism

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Glutamine metabolism is one of the hallmarks of cancers which is described as an essential role in serving as a major energy and building blocks supply to cell proliferation in cancer cells. Many malignant tumor cells always display glutamine addiction. The “kidney-type” glutaminase (GLS1) is a metabolism enzyme which plays a significant part in glutaminolysis. Interestingly, GLS1 is often overexpressed in highly proliferative cancer cells to fulfill enhanced glutamine demand. So far, GLS1 has been proved to be a significant target during the carcinogenesis process, and emerging evidence reveals that its inhibitors could provide a benefit strategy for cancer therapy. Herein, we summarize the prognostic value of GLS1 in multiple cancer type and its related regulatory factors which are associated with antitumor activity. Moreover, this review article highlights the remarkable reform of discovery and development for GLS1 inhibitors. On the basis of case studies, our perspectives for targeting GLS1 and development of GLS1 antagonist are discussed in the final part.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

The raw date supporting the conclusions of this article will be made available by the authors, without undue reservation, to any qualified researcher.

References

  1. Koppenol WH, Bounds PL, Dang CV, et al. Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11(5):325–37.

    Article  CAS  PubMed  Google Scholar 

  2. Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol. 1927;8(6):519–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  4. Geck RC, Toker A. Nonessential amino acid metabolism in breast cancer. Adv Biol Regul. 2016;62:11–7.

    Article  CAS  PubMed  Google Scholar 

  5. Altman BJ, Stine ZE, Dang CV. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer. 2016;16(10):619–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Curthoys NP, Watford M, et al. Regulation of glutaminase activity and glutamine metabolism. Annu Rev Nutr. 1995;15:133–59.

    Article  CAS  PubMed  Google Scholar 

  7. DeBerardinis RJ, Cheng T. The diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene. 2010;29(3):313–24.

    Article  CAS  PubMed  Google Scholar 

  8. Aledo JC, Gomez-Fabre PM, Olalla L, et al. Identification of two human glutaminase loci and tissue-specific expression of the two related genes. Mamm Genome. 2000;11(12):1107–10.

    Article  CAS  PubMed  Google Scholar 

  9. Curthoys NP, Kuhlenschmidt T, Godfrey SS, et al. Phosphate-dependent glutaminase from rat kidney. Cause of increased activity in response to acidosis and identity with glutaminase from other tissues. Arch Biochem Biophys. 1976;172(1):162–7.

    Article  CAS  PubMed  Google Scholar 

  10. Kristin GA, David SD, Ayellet VS, et al. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015;348(6235):648–60.

    Article  CAS  Google Scholar 

  11. Matés J, Segura J, Martín-Rufián M, Campos-Sandoval J, Alonso F, Márquez J. Glutaminase isoenzymes as key regulators in metabolic and oxidative stress against cancer. Curr Mol Med. 2013;13(4):514–34.

    Article  PubMed  Google Scholar 

  12. Huang F, Zhang Q, Ma H, et al. Expression of glutaminase is upregulated in colorectal cancer and of clinical significance. Int J Clin Exp Pathol. 2014;7(3):1093–100.

    PubMed  PubMed Central  Google Scholar 

  13. Pan T, Gao L, Wu G, et al. Elevated expression of glutaminase confers glucose utilization via glutaminolysis in prostate cancer. Biochem Biophys Res Commun. 2015;456(1):452–8.

    Article  CAS  PubMed  Google Scholar 

  14. Gross MI, Demo SD, Dennison JB, et al. Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol Canc Therapeut. 2014;13(4):890–901.

    Article  CAS  Google Scholar 

  15. Yu DC, Shi XB, Meng G, et al. Kidney-type glutaminase (GLS1) is a biomarker for pathologic diagnosis and prognosis of hepatocellular carcinoma. Oncotarget. 2015;6(10):7619–31.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mohamed A, Deng X, Khuri FR, et al. Altered glutamine metabolism and therapeutic opportunities for lung cancer. Clin Lung Cancer. 2014;15(1):7–15.

    Article  CAS  PubMed  Google Scholar 

  17. Katt WP, Cerione RA. Glutaminase regulation in cancer cells: a drugable chain of events. Drug Discov. 2014;19(4):450–7.

    CAS  Google Scholar 

  18. Wang ES, Frankfurt O, Orford KW. Phase 1 study of CB-839, a first-in-class, orally administered small molecule inhibitor of glutaminase in patients with relapsed/refractory leukemia. Blood. 2015;126:2566.

    Article  Google Scholar 

  19. Lu WQ, Hu YY, Lin XP, et al. Knockdown of PKM2 and GLS1 expression can significantly reverse oxaliplatin-resistance in colorectal cancer cells. Oncotarget. 2017;8(27):44171–85.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Liu RQ, Li YJ, Tian LT. Gankyrin drives metabolic reprogramming to promote tumorigenesis, metastasis and drug resistance through activating β-catenin/c-Myc signaling in Human Hepatocellular Carcinoma. Cancer Lett. 2019;28(443):34–46.

    Article  CAS  Google Scholar 

  21. Mariia O, Yuneva WM, et al. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metabolism. 2012;15(2):157–70.

    Article  CAS  Google Scholar 

  22. Xia JB, Sun YC, Zhang MT, et al. GLS1 promotes proliferation in hepatocellular carcinoma cells via AKT/GSK3β/CyclinD1 pathway. Exp Cell Res. 2019;381(1):1–9.

    Article  CAS  Google Scholar 

  23. Ge YX, Yan XD, Jin YG, et al. FMiRNA-192 and miRNA-204 directly Suppress lncRNA HOTTIP and Interrupt GLS1 Mediated Glutaminolysis in Hepatocellular Carcinoma. PLoSGenet. 2015;12(1):e1005825.

    Google Scholar 

  24. Dong M, Miao L, Zhang FM, et al. Nuclear factor-κB p65 regulates glutaminase 1 expression in human hepatocellular carcinoma. Onco Targets Ther. 2018;11:3721–9.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Li BH, Cao YJ, Gang M, et al. Targeting glutaminase 1 attenuates stemenss properties in hepatocellular carcinoma by increasing reactive oxygen species and suppressing Wnt/beta-catenin pathway. EBioMedicine. 2019;39:239–54.

    Article  PubMed  Google Scholar 

  26. Xiang LS, Mou J, Shao B, et al. Glutaminase 1 expression in colorectal cancer cells is induced by hypoxia and required for tumor growth, invasion, and metastatic colonization. Cell Death Dis. 2019;10(2):40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Xu XY, Li JY, Sun X, et al. Tumor suppressor NDRG2 inhibits glycolysis and glutaminolysis in colorectal cancer cells by repressing c-Myc expression. Oncotarget. 2015;6(28):26161–76.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Huang F, Zhang Q, Ma H, et al. Expression of glutaminase is upregulated in colorectal cancer and of clinical significance. Int J Clin Exp Pathol. 2014;7(3):1093–100.

    PubMed  PubMed Central  Google Scholar 

  29. Li J, Song P, Jiang T, et al. Heat shock factor 1 epigenetically stimulates glutaminase-1-dependent mTOR activation to promote colorectal carcinogenesis. Mol Ther. 2018;26(7):1828–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee JS, Kang JH, Lee SH, et al. Dual targeting of glutaminase 1 and thymidylate synthase elicits death synergistically in NSCLC. Cell Death Dis. 2016;7(12):e2511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kang JH, Lee SH, Lee JS, et al. Aldehyde dehydrogenase inhibition combined with phenformin treatment reversed NSCLC through ATP depletion. Oncotarget. 2016;7(31):49397–410.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zu XL, Guppy M. Cancer metabolism: facts, fantasy, and fiction. Biochem Biophys Res Commun. 2004;313(3):459–65.

    Article  CAS  PubMed  Google Scholar 

  33. Li J, Csibi A, Yang S, et al. Synthetic lethality of combined glutaminase and Hsp90 inhibition in mTORC1-driven tumor cells. Proc Natl Acad Sci. 2015;112(1):E21–9.

    Article  CAS  PubMed  Google Scholar 

  34. Guo L, Zhou B, Liu Z, et al. Blockage of glutaminolysis enhances the sensitivity of ovarian cancer cells to PI3K/mTOR inhibition involvement of STAT3 signaling. Tumour Biol. 2016;37(8):11007–15.

    Article  CAS  PubMed  Google Scholar 

  35. Fu AQ, Yu Z, Song YB, et al. Silencing of glutaminase 1 resensitizes Taxol-resistant breast cancer cells to Taxol. Mol Med Rep. 2015;11(6):4727–33.

    Article  CAS  PubMed  Google Scholar 

  36. Qie S, Clarissa C, Li WH, et al. ErbB2 activation upregulates glutaminase 1 expression which promotes breast cancer cell proliferation. J Cell Biochem. 2014;115(3):498–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim S, Kim DH, Jung WH, et al. Expression of glutamine metabolism-related proteins according to molecular subtype of breast cancer. Endocr Relat Cancer. 2013;20(3):339–48.

    Article  CAS  PubMed  Google Scholar 

  38. Proteomics C, Guo YQ, Wonkyu S, et al. Targeting cellular metabolism to reduce head and neck cancer growth. Sci Rep. 2019;9(1):4995.

    Article  CAS  Google Scholar 

  39. Cassago A, Ferreira AP, Ferreira IM, et al. Mitochondrial localization and structure-based phosphate activation mechanism of Glutaminase C with implications for cancer metabolism. Proc Natl. 2012;109(4):1092–7.

    Article  CAS  Google Scholar 

  40. Willems L, Jacque N, Jacquel A, et al. Inhibiting glutamine uptake represents an attractive new strategy for treating acute myeloid leukemia. Blood. 2013;122(20):3521–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Anne MR, Cl’ement L, Godelieve M, et al. Targeting glutaminolysis has antileukemic activity in acute myeloid leukemia and synergizes with BCL-2 inhibition. Blood. 2015;126(11):1346–56.

    Article  CAS  Google Scholar 

  42. Nicklin P, Bergman P, Zhang B, et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell. 2009;136(3):521–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gao P, Tchernyshyov I, Chang TC, et al. C-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009;458(7239):762–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Qu X, Sun J, Zhang YM, et al. C-Myc-driven glycolysis via TXNIP suppression is dependent on glutaminase-MondoA axis in prostrate cancer. Biochem Biophys Res Commun. 2018;504(2):415–21.

    Article  CAS  PubMed  Google Scholar 

  45. Yuan L, Sheng X, Willson AK, et al. Glutamine promotes ovarian cancer cell proliferation through the mTOR/S6 pathway. Endocr Relat Cancer. 2015;22(4):577–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shanware NP, Mullen AR, DeBerardinis RJ, et al. Glutamine: pleiotropic roles in tumor growth and stress resistance. J Mol Med. 2011; 89(3):229–36.

    Article  CAS  PubMed  Google Scholar 

  47. Martin RM, Nascimento GR, Higuero A, et al. Both GLS silencing and GLS2 overexpression synergize with oxidative stress against proliferation of glioma cells. J Mol Med (Berl). 2014;92(3):277–90.

    Article  CAS  Google Scholar 

  48. Ulanet DB, Couto K, Jha A, et al. Mesenchymal phenotype predisposes lung cancer cells to impaired proliferation and redox stress in response to glutaminase inhibition. PLoS ONE. 2014;9(12):e115144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Yuan L, Sheng X, Clark LH, et al. Glutaminase inhibitor compound 968 inhibits cell proliferation and sensitizes paclitaxel in ovarian cancer. Am J Transl Res. 2016;8(10):4265–77.

    PubMed  PubMed Central  Google Scholar 

  50. Zhen J, Zhang CH, Gan L, et al. ITRAQ-based quantitative proteomics approach identifies novel diagnostic biomarkers that were essential for glutamine metabolism and redox homeostasis for gastric cancer. Proteomics Clin Appl. 2019;13(4):e1800038.

    Article  CAS  Google Scholar 

  51. Cetindis M, Biegner T, Munz AT, et al. Glutaminolysis and carcinogenesis of oral squamous cell carcinoma. Eur Arch Otorhinolaryngol. 2016;273(2):495–503.

    Article  PubMed  Google Scholar 

  52. Xiang Y, Stine ZE, Xia J, et al. Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis. J Clin Invest. 2015;125(6):2293–306.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hura MW, Yoona JH, Kima MY, et al. Kr-POK (ZBTB7c) regulates cancer cell proliferation through glutamine metabolism. BBA-Gene Regul Mech. 2017;1860(8):829–38.

    Google Scholar 

  54. Song Z, Wei B, Lu C, et al. Glutaminase sustains cell survival via the regulation of glycolysis and glutaminolysis in colorectal cancer. Oncol Lett. 2017;14(3):3117–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Zhao J, Zhou R, Hui K, et al. Selenite inhibits glutamine metabolism and induces apoptosis by regulating GLS1 protein degradation via APC/C-CDH1 pathway in colorectal cancer cells. Oncotarget. 2017;8(12):18832–47.

    Article  PubMed  Google Scholar 

  56. Okazaki A. Glutaminase and poly (ADP-ribose) polymerase inhibitors suppress pyrimidine synthesis and VHL-deficient renal cancers. J Clin Investig. 2017;127(5):1631–45.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Semenza GL. Molecular mechanisms mediating metastasis of hypoxic breast cancer cells. Trends Mol Med. 2012;18(9):534–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chang TC. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet. 2008;40(1):43–50.

    Article  CAS  PubMed  Google Scholar 

  59. Miriam RR, Andrew NL, Brian R, et al. Control of glutamine metabolism by the tumor suppressor Rb. Oncogene. 2014;33(5):556–66.

    Article  CAS  Google Scholar 

  60. Yuneva M, Zamboni N, Oefner P, et al. Deficiency in glutamine but not glucose induces Myc-dependent apoptosis in human cells. J Cell Biol. 2007;178(1):93–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Seltzer MJ, Bennett BD, Joshi AD, et al. Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res. 2010;70(22):8981–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shroff EH, Eberlin LS, Dang VM, et al. MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism. Proc Natl Acad. 2015;112(21):6539–44.

    Article  CAS  Google Scholar 

  63. Wise DR, DeBerardinis RJ, Mancuso AS, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad. 2008;105(48):18782–7.

    Article  CAS  Google Scholar 

  64. Wang JB, Erickson JW, Fuji R, et al. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell. 2011;18(3):207–19.

    Article  CAS  Google Scholar 

  65. O’Donnell KA, Wentzel EA, Zeller KI, et al. C-Myc-regulated microRNAs modulate E2F1 expression. Nature. 2005;435(7043):839–43.

    Article  CAS  PubMed  Google Scholar 

  66. Lombardi L, Newcomb EW, Dalla-Favera R, et al. Pathogenesis of Burkitt lymphoma: expression of an activated c-Myc oncogene causes the tumorigenic conversion of EBV-infected human B lymphoblasts. Cell. 1987;49(2):161–70.

    Article  CAS  PubMed  Google Scholar 

  67. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11(9):597–610.

    Article  CAS  PubMed  Google Scholar 

  68. Kristin F, Wilson JW, Erickson MA, et al. Rho GTPases and their roles in cancer metabolism. Trends Mol Med. 2013;19(2):74–82.

    Article  CAS  Google Scholar 

  69. Godfrey S, Kuhlenschmidt T, Curthoys N, et al. Correlation between activation and dimer formation of rat renal phosphate dependent glutaminase. J Biol Chem. 1977;252(6):1927–31.

    Article  CAS  PubMed  Google Scholar 

  70. Morehouse RF, Curthoys NP. Properties of rat renal phosphate-dependent glutaminase coupled to Sepharose. Evidence that dimerization is essential for activation. Biochem J. 1981;193(3):709–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sayre FW, Roberts E. Preparation and some properties of a phosphateactivated glutaminase from kidneys. J Biol Chem. 1958;233(5):1128–34.

    Article  CAS  PubMed  Google Scholar 

  72. Campos-Sandoval JA. Expression of functional human glutaminase in baculovirus system: affinity purification, kinetic and molecular characterization. Int J Biochem Cell Biol. 2007;39(4):765–73.

    Article  CAS  PubMed  Google Scholar 

  73. Kenny J. Bacterial expression, purification and characterization of rat kidney-type mitochondrial glutaminase. Protein Expres Purif. 2003;31(1):140–8.

    Article  CAS  Google Scholar 

  74. Gorman MW, He MX, Hal CS, et al. Inorganic phosphate as regulator of adenosine formation in isolated guinea pig hearts. Am J Physiol. 1997;272(2 Pt 2):H913–20.

    CAS  PubMed  Google Scholar 

  75. Nguyen T, Mourad O, Johnson JA. Delta protein kinase C interacts with the dsubunit of the F1F0 ATPase in neonatal cardiac myocytes exposed to hypoxia or phorbol ester. Implications for F1F0 ATPase regulation. J Biol Chem. 2008;283(44):29831–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Aragones J, Fraisl P, Bases M, et al. Oxygen sensors at the crossroad of metabolism. Cell Metab. 2009;9(1):11–22.

    Article  CAS  PubMed  Google Scholar 

  77. Deberardinis RJ, Lum JJ, Hatzivassiliou G, et al. The biology of cancer. Metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008; 7(1):11–20.

    Article  CAS  PubMed  Google Scholar 

  78. SteveStegen, Nickvan G, GuyEelen, et al. HIF-1α Promotes glutamine-mediated redox homeostasis and glycogen-dependent bioenergetics to support postimplantation bone cell survival. Cell Metab 2016;23(2):265–79.

    Article  CAS  Google Scholar 

  79. Huang X, Gan GM, Wang XX, et al. The HGF-MET axis coordinates liver cancer metabolism and autophagy for chemotherapeutic resistance. Autophagy. 2019;15(7):1258–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Son J, Lyssiotis CA, Ying H, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 2013;496(7443):101–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bruneli L, Caiola E, Marabese M, et al. Capturing the metabolomics diversity of KRAS mutants in non-small-cell lung cancer cells. Oncotarget. 2014;5(13):4722–31.

    Article  Google Scholar 

  82. Hua M, Liu LS, Yao WR, et al. Activation of p53 by costunolide blocks glutaminolysis and inhibits proliferation in human colorectal cancer cells. Gene. 2018;678:261–9.

    Article  CAS  Google Scholar 

  83. Rahman A, Smith FP, Luc PT, et al. Phase I study and clinical pharmacology of 6-diazo-5-oxo-L-Norleucine (DON). Invest New Drugs. 1985;3(4):369–74.

    Article  CAS  PubMed  Google Scholar 

  84. Huang Q, Stalnecker C, Zhang C, et al. Characterization of the interactions of protent allosteric inhibitors with glutaminase C, a key enzyme in cancer cell glutamin metabolism. J Biol Chem. 2018;293(10):3535–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Thomas AG, Rojas C, Tanega C, et al. Kinetic characterization of ebselen, chelerythrine and apomorphine as glutaminase inhibitors. Biochem Biophys Res Commun. 2013;438(2):243–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Thangavelu K, Chong QY, Low BC, et al. Structural basis for the active site inhibition mechanism of human kidneytype glutaminase (KGA). Sci Rep. 2014;4:3827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ortlund E, Lacount MW, Lewinski K, et al. Reactions of Pseudomonas 7A glutaminase-asparaginase with diazo analogues of glutamine and asparagine result in unexpected covalent inhibitions and suggests an unusual catalytic triad Thr-Tyr-Glu. Biochemistry. 2000;39(6):1199–204.

    Article  CAS  PubMed  Google Scholar 

  88. Kathryn M, Lemberg. We’re Not “DON” Yet: Optimal Dosing and Prodrug Delivery of 6-Diazo-5-oxo-L-norleucine. Mol Cancer Ther. 2018;17(9):1824–32.

    Article  Google Scholar 

  89. Rana R, Andrej J, Lukáš T, et al. Discovery of 6-Diazo-5-oxo-l-norleucine (DON) prodrugs with enhanced csf delivery in monkeys: a potential treatment for glioblastoma. J Med Chem. 2016;59(18):8621–33.

    Article  CAS  Google Scholar 

  90. Robinson MM, McBryant SJ, Tsukamoto T, et al. Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2 (5-phenylacetamido-1, 2, 4-thiadiazol-2-yl) ethyl sulfide (BPTES). Biochem J. 2007;406(3):407–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lee A, Lane AN, Hamaker M, et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab. 2012;15(1):110–21.

    Article  CAS  Google Scholar 

  92. Goodwin PJ, Wendy RP, Karen AG, et al. Effect of metformin vs placebo on and metabolic factors in NCIC CTG MA.32. J Natl Cancer Inst. 2015;107(3):006.

    Article  CAS  Google Scholar 

  93. Elgogary A, Xu QG, Brad P, et al. Combination therapy with BPTES nanoparticles and metformin targets the metabolic heterogeneity of pancreatic cancer. Proc Natl Acad Sci USA. 2016;113(36):E5328–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shukla K, Ferraris DV, Thomas AG, et al. Design, synthesis and pharmacological evaluation of bis-2 (5-phenylacetamido-1, 2, 4-thiadiazol-2-yl) ethyl sulfide 3 (BPTES) analogs as glutaminase inhibitors. J Med Chem. 2012;55(23):10551–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Stalnecker CA, Ulrich SM, Li Y, et al. Mechanism by which a recently discovered allosteric inhibitor blocks glutamine metabolism in transformed cells. Proc Natl Acad. 2015;112(2):394–9.

    Article  CAS  Google Scholar 

  96. Natalie E, Simpson VP, Tryndyak FA, et al. An in vitro investigation of metabolically sensitive biomarkers in breast cancer progression. Breast Cancer Res Treat. 2012;133(3):959–68.

    Article  CAS  Google Scholar 

  97. Wang R, Dillon CP, Shi LZ, et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity. 2011;35(6):871–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Michaud J, Simpson KM, Escher R, et al. Integrative analysis of RUNX1 downstream pathways and target genes. BBMCGenomics. 2008;9:363.

    Google Scholar 

  99. Van den Heuvel AP, Wooster RF, Bachman KE, et al. Analysis of glutamine dependency in non-small cell lung cancer. Cancer Biol Ther. 2012;13(12):1185–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Parlati F, Gross M, Janes J, et al. Glutaminase inhibitor CB-839 synergizes with pomalidomide in preclinical multiple myeloma models. Blood. 2014;124:4720.

    Article  Google Scholar 

  101. DeMichele A, Harding JJ, Telli ML, et al. Phase 1 study of CB-839, a small molecule inhibitor of glutaminase (GLS) in combination with paclitaxel (Pac) in patients (pts) with triple negative breast cancer (TNBC). J Clin Oncol. 2016;34:1011.

    Article  Google Scholar 

  102. Song M, Kim SH, Chun YJ, et al. Recent development of small molecule Glutaminase inhibitors. Curr Top Med Chem. 2018;18:1–12.

    Article  CAS  Google Scholar 

  103. Matre P, Shariati M, Velez J, et al. Efficacy of novel glutaminase inhibitor CB-839 in acute myeloid leukemia. Blood. 2014;18(11):1937–46.

    Google Scholar 

  104. Das DS, Ravillah D, Ray A, et al. Anti-myeloma activity of a novel glutaminase inhibitor CB-839. Blood. 2014;124:3439.

    Article  Google Scholar 

  105. Parlati F, Bromley-Dulfano S, Demo S, et al. Antitumor activity of the glutaminase inhibitor CB-839 in hematological malignances. Blood. 2013;77(23):6746–58.

    Google Scholar 

  106. Jalan R, Wright G, Davies NA, et al. L-Ornithine phenylacetate (OP): a novel treatment for hyperammonemia and hepatic encephalopathy. Med Hypotheses. 2007;69(5):1064–9.

    Article  CAS  PubMed  Google Scholar 

  107. Simpson NE, Tryndyak VP, Beland FA, et al. An in vitro investigation of metabolically sensitive biomarkers in breast cancer progression. Breast Cancer Res Treat. 2012;133:959–68.

    Article  CAS  PubMed  Google Scholar 

  108. Manabu K, Kiyotaka O, Hideyuki S, et al. A shift in glutamine nitrogen metabolism contributes to the malignant progression of cancer. Nature communication. 2020;11(1):1320.

    Article  CAS  Google Scholar 

  109. Kung HN, Marks JR, Chi JT, et al. Glutamine synthetase is a genetic determinant of cell type-specific glutamine independence in breast epithelia. PLoS Genet. 2011;7(8):e1002229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Jin N, Bi AW, Lan XJ, et al. Identification of metabolic vulnerabilities of receptor tyrosine kinases-driven cancer. Nat Commun. 2019;10(1):2701.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This study is supported by the National Key Research and Development Program of China (Grant No. 2017YFA0205200), the National Natural Science Foundation of China (Grant Nos. 81771957, 81801811).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ShengTao Yuan or YongJie Xin.

Ethics declarations

Conflict of interest

There are no conflicts of interest associated with submission of this manuscript for all the authors listed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, W., Yang, X., Zhang, Q. et al. Targeting GLS1 to cancer therapy through glutamine metabolism. Clin Transl Oncol 23, 2253–2268 (2021). https://doi.org/10.1007/s12094-021-02645-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-021-02645-2

Keywords

Navigation